Boundedness and spectral invariance for standard pseudodifferential operators on anisotropically weighted LP-Sobolev spaces

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Elmar Schrohe

Externe Organisationen

  • Johannes Gutenberg-Universität Mainz
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)271-284
Seitenumfang14
FachzeitschriftIntegral Equations and Operator Theory
Jahrgang13
Ausgabenummer2
PublikationsstatusVeröffentlicht - März 1990
Extern publiziertJa

Abstract

It is shown that pseudodifferential operators with symbols in the standard classes Sρ,δm(ℝn) define bounded maps between large classes of weighted LP-Sobolev spaces where the growth of the weight does not have to be isotropic. Moreover, the spectrum is independent of the choice of the space.

ASJC Scopus Sachgebiete

Zitieren

Boundedness and spectral invariance for standard pseudodifferential operators on anisotropically weighted LP-Sobolev spaces. / Schrohe, Elmar.
in: Integral Equations and Operator Theory, Jahrgang 13, Nr. 2, 03.1990, S. 271-284.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{e1e73fbd5d374dc4b06902a16e91e5f6,
title = "Boundedness and spectral invariance for standard pseudodifferential operators on anisotropically weighted LP-Sobolev spaces",
abstract = "It is shown that pseudodifferential operators with symbols in the standard classes Sρ,δm(ℝn) define bounded maps between large classes of weighted LP-Sobolev spaces where the growth of the weight does not have to be isotropic. Moreover, the spectrum is independent of the choice of the space.",
author = "Elmar Schrohe",
note = "Copyright: Copyright 2007 Elsevier B.V., All rights reserved.",
year = "1990",
month = mar,
doi = "10.1007/BF01193760",
language = "English",
volume = "13",
pages = "271--284",
journal = "Integral Equations and Operator Theory",
issn = "0378-620X",
publisher = "Birkhauser Verlag Basel",
number = "2",

}

Download

TY - JOUR

T1 - Boundedness and spectral invariance for standard pseudodifferential operators on anisotropically weighted LP-Sobolev spaces

AU - Schrohe, Elmar

N1 - Copyright: Copyright 2007 Elsevier B.V., All rights reserved.

PY - 1990/3

Y1 - 1990/3

N2 - It is shown that pseudodifferential operators with symbols in the standard classes Sρ,δm(ℝn) define bounded maps between large classes of weighted LP-Sobolev spaces where the growth of the weight does not have to be isotropic. Moreover, the spectrum is independent of the choice of the space.

AB - It is shown that pseudodifferential operators with symbols in the standard classes Sρ,δm(ℝn) define bounded maps between large classes of weighted LP-Sobolev spaces where the growth of the weight does not have to be isotropic. Moreover, the spectrum is independent of the choice of the space.

UR - http://www.scopus.com/inward/record.url?scp=0009408905&partnerID=8YFLogxK

U2 - 10.1007/BF01193760

DO - 10.1007/BF01193760

M3 - Article

AN - SCOPUS:0009408905

VL - 13

SP - 271

EP - 284

JO - Integral Equations and Operator Theory

JF - Integral Equations and Operator Theory

SN - 0378-620X

IS - 2

ER -