Bounded Entanglement Entropy in the Quantum Ising Model

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Geoffrey R. Grimmett
  • Tobias J. Osborne
  • Petra F. Scudo

Organisationseinheiten

Externe Organisationen

  • University of Cambridge
  • Gemeinsame Forschungsstelle (GFS)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)281-296
Seitenumfang16
FachzeitschriftJournal of Statistical Physics
Jahrgang178
Ausgabenummer1
Frühes Online-Datum2 Dez. 2019
PublikationsstatusVeröffentlicht - Jan. 2020

Abstract

A rigorous proof is presented of the boundedness of the entanglement entropy of a block of spins for the ground state of the one-dimensional quantum Ising model with sufficiently strong transverse field. This is proved by a refinement of the stochastic geometric arguments in the earlier work by Grimmett et al. (J Stat Phys 131:305–339, 2008). The proof utilises a transformation to a model of classical probability called the continuum random-cluster model. Our method of proof is fairly robust, and applies also to certain disordered systems.

ASJC Scopus Sachgebiete

Zitieren

Bounded Entanglement Entropy in the Quantum Ising Model. / Grimmett, Geoffrey R.; Osborne, Tobias J.; Scudo, Petra F.
in: Journal of Statistical Physics, Jahrgang 178, Nr. 1, 01.2020, S. 281-296.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Grimmett GR, Osborne TJ, Scudo PF. Bounded Entanglement Entropy in the Quantum Ising Model. Journal of Statistical Physics. 2020 Jan;178(1):281-296. Epub 2019 Dez 2. doi: 10.1007/s10955-019-02432-y, 10.15488/10530
Grimmett, Geoffrey R. ; Osborne, Tobias J. ; Scudo, Petra F. / Bounded Entanglement Entropy in the Quantum Ising Model. in: Journal of Statistical Physics. 2020 ; Jahrgang 178, Nr. 1. S. 281-296.
Download
@article{7057b9c796524150b4a5c56e06a1c511,
title = "Bounded Entanglement Entropy in the Quantum Ising Model",
abstract = "A rigorous proof is presented of the boundedness of the entanglement entropy of a block of spins for the ground state of the one-dimensional quantum Ising model with sufficiently strong transverse field. This is proved by a refinement of the stochastic geometric arguments in the earlier work by Grimmett et al. (J Stat Phys 131:305–339, 2008). The proof utilises a transformation to a model of classical probability called the continuum random-cluster model. Our method of proof is fairly robust, and applies also to certain disordered systems.",
keywords = "Area law, Entanglement, Entropy, Quantum Ising model, Random-cluster model",
author = "Grimmett, {Geoffrey R.} and Osborne, {Tobias J.} and Scudo, {Petra F.}",
year = "2020",
month = jan,
doi = "10.1007/s10955-019-02432-y",
language = "English",
volume = "178",
pages = "281--296",
journal = "Journal of Statistical Physics",
issn = "0022-4715",
publisher = "Springer New York",
number = "1",

}

Download

TY - JOUR

T1 - Bounded Entanglement Entropy in the Quantum Ising Model

AU - Grimmett, Geoffrey R.

AU - Osborne, Tobias J.

AU - Scudo, Petra F.

PY - 2020/1

Y1 - 2020/1

N2 - A rigorous proof is presented of the boundedness of the entanglement entropy of a block of spins for the ground state of the one-dimensional quantum Ising model with sufficiently strong transverse field. This is proved by a refinement of the stochastic geometric arguments in the earlier work by Grimmett et al. (J Stat Phys 131:305–339, 2008). The proof utilises a transformation to a model of classical probability called the continuum random-cluster model. Our method of proof is fairly robust, and applies also to certain disordered systems.

AB - A rigorous proof is presented of the boundedness of the entanglement entropy of a block of spins for the ground state of the one-dimensional quantum Ising model with sufficiently strong transverse field. This is proved by a refinement of the stochastic geometric arguments in the earlier work by Grimmett et al. (J Stat Phys 131:305–339, 2008). The proof utilises a transformation to a model of classical probability called the continuum random-cluster model. Our method of proof is fairly robust, and applies also to certain disordered systems.

KW - Area law

KW - Entanglement

KW - Entropy

KW - Quantum Ising model

KW - Random-cluster model

UR - http://www.scopus.com/inward/record.url?scp=85075955807&partnerID=8YFLogxK

U2 - 10.1007/s10955-019-02432-y

DO - 10.1007/s10955-019-02432-y

M3 - Article

AN - SCOPUS:85075955807

VL - 178

SP - 281

EP - 296

JO - Journal of Statistical Physics

JF - Journal of Statistical Physics

SN - 0022-4715

IS - 1

ER -