Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 103-112 |
Seitenumfang | 10 |
Fachzeitschrift | Plant Physiology and Biochemistry |
Jahrgang | 151 |
Frühes Online-Datum | 18 März 2020 |
Publikationsstatus | Veröffentlicht - Juni 2020 |
Abstract
Endogenous signals in response to exogenous factors determine the senescence of flowers. Interactions among phytohormones especially abscisic acid (ABA) and ethylene are the major determinant of the senescence. In the present study, complex expression patterns of the genes related to ABA and ethylene as endogenous signals were investigated on cut carnations (Dianthus caryophyllus L.) that were exposed to different light spectra. Expression of ethylene biosynthetic (DcACS and DcACO), and signaling (DcETR and DcEin2) genes and also genes involved in ABA biosynthesis (DcZEP1 and DcNCED1), transport (DcABCG25 and DcABCG40) and catabolism (DcCYP707A1) were evaluated in petals of carnations exposed to three light spectra [white, blue and red]. Lowest relative membrane permeability (RMP) was detected in flowers that exposed to Blue light (BLFs), as a consequence, the longest vase life was found in BLFs. The Red and White lights markedly accelerated flower senescence and increased expression of DcACS and DcACO on day 6 and 10 of vase life assessment respectively; while Blue light inhibited the expression of ethylene biosynthetic genes. Expression of the genes involved in the production and transport of ABA and in signal transduction of ethylene was elevated during vase life of flowers irrespective of exposure to different light spectra. In conclusion, Blue light can be an effective environmental factor to extend the vase life of carnation flowers by delaying the petal senescence through down-regulation of ethylene biosynthetic genes and up-regulation of ABA biosynthetic genes.
ASJC Scopus Sachgebiete
- Biochemie, Genetik und Molekularbiologie (insg.)
- Physiologie
- Biochemie, Genetik und Molekularbiologie (insg.)
- Genetik
- Agrar- und Biowissenschaften (insg.)
- Pflanzenkunde
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Plant Physiology and Biochemistry, Jahrgang 151, 06.2020, S. 103-112.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Blue light postpones senescence of carnation flowers through regulation of ethylene and abscisic acid pathway-related genes
AU - Aalifar, Mostafa
AU - Aliniaeifard, Sasan
AU - Arab, Mostafa
AU - Mehrjerdi, Mahboobeh Zare
AU - Serek, Margrethe
N1 - Funding information: We would like to thank Iran National Science Foundation (grant number 96006991 ) and University of Tehran for their supports.
PY - 2020/6
Y1 - 2020/6
N2 - Endogenous signals in response to exogenous factors determine the senescence of flowers. Interactions among phytohormones especially abscisic acid (ABA) and ethylene are the major determinant of the senescence. In the present study, complex expression patterns of the genes related to ABA and ethylene as endogenous signals were investigated on cut carnations (Dianthus caryophyllus L.) that were exposed to different light spectra. Expression of ethylene biosynthetic (DcACS and DcACO), and signaling (DcETR and DcEin2) genes and also genes involved in ABA biosynthesis (DcZEP1 and DcNCED1), transport (DcABCG25 and DcABCG40) and catabolism (DcCYP707A1) were evaluated in petals of carnations exposed to three light spectra [white, blue and red]. Lowest relative membrane permeability (RMP) was detected in flowers that exposed to Blue light (BLFs), as a consequence, the longest vase life was found in BLFs. The Red and White lights markedly accelerated flower senescence and increased expression of DcACS and DcACO on day 6 and 10 of vase life assessment respectively; while Blue light inhibited the expression of ethylene biosynthetic genes. Expression of the genes involved in the production and transport of ABA and in signal transduction of ethylene was elevated during vase life of flowers irrespective of exposure to different light spectra. In conclusion, Blue light can be an effective environmental factor to extend the vase life of carnation flowers by delaying the petal senescence through down-regulation of ethylene biosynthetic genes and up-regulation of ABA biosynthetic genes.
AB - Endogenous signals in response to exogenous factors determine the senescence of flowers. Interactions among phytohormones especially abscisic acid (ABA) and ethylene are the major determinant of the senescence. In the present study, complex expression patterns of the genes related to ABA and ethylene as endogenous signals were investigated on cut carnations (Dianthus caryophyllus L.) that were exposed to different light spectra. Expression of ethylene biosynthetic (DcACS and DcACO), and signaling (DcETR and DcEin2) genes and also genes involved in ABA biosynthesis (DcZEP1 and DcNCED1), transport (DcABCG25 and DcABCG40) and catabolism (DcCYP707A1) were evaluated in petals of carnations exposed to three light spectra [white, blue and red]. Lowest relative membrane permeability (RMP) was detected in flowers that exposed to Blue light (BLFs), as a consequence, the longest vase life was found in BLFs. The Red and White lights markedly accelerated flower senescence and increased expression of DcACS and DcACO on day 6 and 10 of vase life assessment respectively; while Blue light inhibited the expression of ethylene biosynthetic genes. Expression of the genes involved in the production and transport of ABA and in signal transduction of ethylene was elevated during vase life of flowers irrespective of exposure to different light spectra. In conclusion, Blue light can be an effective environmental factor to extend the vase life of carnation flowers by delaying the petal senescence through down-regulation of ethylene biosynthetic genes and up-regulation of ABA biosynthetic genes.
KW - Abscisic acid
KW - Carnation
KW - Ethylene
KW - Light spectrum
KW - Senescence
UR - http://www.scopus.com/inward/record.url?scp=85081950041&partnerID=8YFLogxK
U2 - 10.1016/j.plaphy.2020.03.018
DO - 10.1016/j.plaphy.2020.03.018
M3 - Article
C2 - 32208322
AN - SCOPUS:85081950041
VL - 151
SP - 103
EP - 112
JO - Plant Physiology and Biochemistry
JF - Plant Physiology and Biochemistry
SN - 0981-9428
ER -