Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 4057-4069 |
Seitenumfang | 13 |
Fachzeitschrift | Proceedings of the American Mathematical Society |
Jahrgang | 141 |
Ausgabenummer | 12 |
Publikationsstatus | Veröffentlicht - 2013 |
Extern publiziert | Ja |
Abstract
We determine the numerical invariants of blocks with defect group D2n *C2m ≅ Q2n *C2m (central product), where n ≥ 3 and m ≥ 2. As a consequence, we prove Brauer's k(B)-conjecture, Olsson's conjecture (and more generally Eaton's conjecture), Brauer's height zero conjecture, the Alperin- McKay conjecture, Alperin's weight conjecture and Robinson's ordinary weight conjecture for these blocks. Moreover, we show that the gluing problem has a unique solution in this case. This paper continues B. Sambale, Blocks with defect group D2n × C2m, J. Pure Appl. Algebra 216 (2012), 119-125.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Proceedings of the American Mathematical Society, Jahrgang 141, Nr. 12, 2013, S. 4057-4069.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Blocks with central product defect group D2n * C2m
AU - Sambale, Benjamin
PY - 2013
Y1 - 2013
N2 - We determine the numerical invariants of blocks with defect group D2n *C2m ≅ Q2n *C2m (central product), where n ≥ 3 and m ≥ 2. As a consequence, we prove Brauer's k(B)-conjecture, Olsson's conjecture (and more generally Eaton's conjecture), Brauer's height zero conjecture, the Alperin- McKay conjecture, Alperin's weight conjecture and Robinson's ordinary weight conjecture for these blocks. Moreover, we show that the gluing problem has a unique solution in this case. This paper continues B. Sambale, Blocks with defect group D2n × C2m, J. Pure Appl. Algebra 216 (2012), 119-125.
AB - We determine the numerical invariants of blocks with defect group D2n *C2m ≅ Q2n *C2m (central product), where n ≥ 3 and m ≥ 2. As a consequence, we prove Brauer's k(B)-conjecture, Olsson's conjecture (and more generally Eaton's conjecture), Brauer's height zero conjecture, the Alperin- McKay conjecture, Alperin's weight conjecture and Robinson's ordinary weight conjecture for these blocks. Moreover, we show that the gluing problem has a unique solution in this case. This paper continues B. Sambale, Blocks with defect group D2n × C2m, J. Pure Appl. Algebra 216 (2012), 119-125.
KW - 2-blocks
KW - Alperin's weight conjecture
KW - Dihedral defect groups
KW - Ordinary weight conjecture
UR - http://www.scopus.com/inward/record.url?scp=84884802969&partnerID=8YFLogxK
U2 - 10.1090/S0002-9939-2013-11938-6
DO - 10.1090/S0002-9939-2013-11938-6
M3 - Article
AN - SCOPUS:84884802969
VL - 141
SP - 4057
EP - 4069
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
SN - 0002-9939
IS - 12
ER -