Details
Originalsprache | Englisch |
---|---|
Publikationsstatus | Elektronisch veröffentlicht (E-Pub) - 2022 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2022.
Publikation: Arbeitspapier/Preprint › Arbeitspapier/Diskussionspapier
}
TY - UNPB
T1 - Bipolar Theorems for Sets of Non-negative Random Variables
AU - Svindland, Gregor
AU - Langner, Johannes
PY - 2022
Y1 - 2022
N2 - This paper assumes a robust, in general not dominated, probabilistic framework and provides necessary and sufficient conditions for a bipolar representation of subsets of the set of all quasi-sure equivalence classes of non-negative random variables, without any further conditions on the underlying measure space. This generalizes and unifies existing bipolar theorems proved under stronger assumptions on the robust framework. Applications are in areas of robust financial modeling.
AB - This paper assumes a robust, in general not dominated, probabilistic framework and provides necessary and sufficient conditions for a bipolar representation of subsets of the set of all quasi-sure equivalence classes of non-negative random variables, without any further conditions on the underlying measure space. This generalizes and unifies existing bipolar theorems proved under stronger assumptions on the robust framework. Applications are in areas of robust financial modeling.
U2 - 10.48550/arXiv.2212.14259
DO - 10.48550/arXiv.2212.14259
M3 - Working paper/Discussion paper
BT - Bipolar Theorems for Sets of Non-negative Random Variables
ER -