Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 14 |
Fachzeitschrift | Sustainable Environment Research |
Jahrgang | 33 |
Ausgabenummer | 1 |
Frühes Online-Datum | 24 Apr. 2023 |
Publikationsstatus | Veröffentlicht - Dez. 2023 |
Abstract
The increase in mineral and ash-rich waste biomass (MWB) generation in emerging economies poses critical environmental problems and bottlenecks the solid waste and wastewater treatment systems. Transforming these MWB such as sewage sludge from wastewater treatment (SSW) to biochar can be a sustainable method for their disposal and resource recovery. However, such biochar has limited applicability due to the relatively low organic content and possibly contaminated nature of SSW. This may be offset through combined pyrolysis with other MWB, which can also support municipal solid waste management. Studies on this MWB co-pyrolysis are lacking and have not yet seen successful long-term implementation. This work is the second part of authors’ research encompassing an analytical and lab-scale investigation of biochar production from MWB through pyrolysis for the case of Chennai city, India. Here, the physicochemical properties of biochar derived from lab-scale co-pyrolysis of SSW with other MWB such as anaerobic digestate from waste to energy plants of food, kitchen or market waste fermentation, and banana peduncles (BP) collected from vegetable markets and their thermolysis mechanism are comprehensively investigated for purpose of carbon sequestration. Also, a novel preliminary investigation of the effect of sample weight (scaling effect) on the analytical pyrolysis of biomass (BP as model substrate) is undertaken to elucidate its impact on the heat of pyrolysis and carbon distribution in resultant biochar. The maximum carbon sequestration potential of the derived biochar types is 0.22 kg CO2 kg−1 biomass. The co-pyrolysis of MWB is exothermic and governed by the synergetic effects of the components in blends with emission profiles following the order CO2 > CH4 > CO > NH3. Co-pyrolysis reduced the heavy metal enrichment in SSW biochar. The derived biochars can be an immediate source of N, P and S in nutrient-deficient acidic soils. The biochar has only up to 4-ring polyaromatic compounds and a residence time longer than 1 h at 500 °C is necessary to improve carbonization. The heat released during analytical pyrolysis of the model biomass and distribution of carbon in the resultant biochar are significantly influenced by scaling effects, drawing attention to the need for a more detailed scaling investigation of biomass pyrolysis.
ASJC Scopus Sachgebiete
- Umweltwissenschaften (insg.)
- Environmental engineering
- Energie (insg.)
- Erneuerbare Energien, Nachhaltigkeit und Umwelt
- Umweltwissenschaften (insg.)
- Gewässerkunde und -technologie
- Umweltwissenschaften (insg.)
- Abfallwirtschaft und -entsorgung
- Umweltwissenschaften (insg.)
- Umweltverschmutzung
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Sustainable Environment Research, Jahrgang 33, Nr. 1, 14, 12.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Biochar synthesis from mineral and ash-rich waste biomass, part 2
T2 - characterization of biochar and co-pyrolysis mechanism for carbon sequestration
AU - Nair, Rahul Ramesh
AU - Kißling, Patrick A.
AU - Marchanka, Alexander
AU - Lecinski, Jacek
AU - Turcios, Ariel E.
AU - Shamsuyeva, Madina
AU - Rajendiran, Nishanthi
AU - Ganesan, Sathish
AU - Srinivasan, Shanmugham Venkatachalam
AU - Papenbrock, Jutta
AU - Weichgrebe, Dirk
N1 - Funding Information: - PD Dr. Stefan Dultz and Roger-Michael Klatt (retired) at the Institute of Soil Science, Leibniz University Hannover (LUH) - Benjamin Grüger at the Institute for Sanitary Engineering and Waste Management (ISAH), LUH Funding Information: - Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under the project BI1708/5 -1.
PY - 2023/12
Y1 - 2023/12
N2 - The increase in mineral and ash-rich waste biomass (MWB) generation in emerging economies poses critical environmental problems and bottlenecks the solid waste and wastewater treatment systems. Transforming these MWB such as sewage sludge from wastewater treatment (SSW) to biochar can be a sustainable method for their disposal and resource recovery. However, such biochar has limited applicability due to the relatively low organic content and possibly contaminated nature of SSW. This may be offset through combined pyrolysis with other MWB, which can also support municipal solid waste management. Studies on this MWB co-pyrolysis are lacking and have not yet seen successful long-term implementation. This work is the second part of authors’ research encompassing an analytical and lab-scale investigation of biochar production from MWB through pyrolysis for the case of Chennai city, India. Here, the physicochemical properties of biochar derived from lab-scale co-pyrolysis of SSW with other MWB such as anaerobic digestate from waste to energy plants of food, kitchen or market waste fermentation, and banana peduncles (BP) collected from vegetable markets and their thermolysis mechanism are comprehensively investigated for purpose of carbon sequestration. Also, a novel preliminary investigation of the effect of sample weight (scaling effect) on the analytical pyrolysis of biomass (BP as model substrate) is undertaken to elucidate its impact on the heat of pyrolysis and carbon distribution in resultant biochar. The maximum carbon sequestration potential of the derived biochar types is 0.22 kg CO2 kg−1 biomass. The co-pyrolysis of MWB is exothermic and governed by the synergetic effects of the components in blends with emission profiles following the order CO2 > CH4 > CO > NH3. Co-pyrolysis reduced the heavy metal enrichment in SSW biochar. The derived biochars can be an immediate source of N, P and S in nutrient-deficient acidic soils. The biochar has only up to 4-ring polyaromatic compounds and a residence time longer than 1 h at 500 °C is necessary to improve carbonization. The heat released during analytical pyrolysis of the model biomass and distribution of carbon in the resultant biochar are significantly influenced by scaling effects, drawing attention to the need for a more detailed scaling investigation of biomass pyrolysis.
AB - The increase in mineral and ash-rich waste biomass (MWB) generation in emerging economies poses critical environmental problems and bottlenecks the solid waste and wastewater treatment systems. Transforming these MWB such as sewage sludge from wastewater treatment (SSW) to biochar can be a sustainable method for their disposal and resource recovery. However, such biochar has limited applicability due to the relatively low organic content and possibly contaminated nature of SSW. This may be offset through combined pyrolysis with other MWB, which can also support municipal solid waste management. Studies on this MWB co-pyrolysis are lacking and have not yet seen successful long-term implementation. This work is the second part of authors’ research encompassing an analytical and lab-scale investigation of biochar production from MWB through pyrolysis for the case of Chennai city, India. Here, the physicochemical properties of biochar derived from lab-scale co-pyrolysis of SSW with other MWB such as anaerobic digestate from waste to energy plants of food, kitchen or market waste fermentation, and banana peduncles (BP) collected from vegetable markets and their thermolysis mechanism are comprehensively investigated for purpose of carbon sequestration. Also, a novel preliminary investigation of the effect of sample weight (scaling effect) on the analytical pyrolysis of biomass (BP as model substrate) is undertaken to elucidate its impact on the heat of pyrolysis and carbon distribution in resultant biochar. The maximum carbon sequestration potential of the derived biochar types is 0.22 kg CO2 kg−1 biomass. The co-pyrolysis of MWB is exothermic and governed by the synergetic effects of the components in blends with emission profiles following the order CO2 > CH4 > CO > NH3. Co-pyrolysis reduced the heavy metal enrichment in SSW biochar. The derived biochars can be an immediate source of N, P and S in nutrient-deficient acidic soils. The biochar has only up to 4-ring polyaromatic compounds and a residence time longer than 1 h at 500 °C is necessary to improve carbonization. The heat released during analytical pyrolysis of the model biomass and distribution of carbon in the resultant biochar are significantly influenced by scaling effects, drawing attention to the need for a more detailed scaling investigation of biomass pyrolysis.
KW - Biochar
KW - Carbon sequestration
KW - Co-pyrolysis
KW - Mineral and ash-rich biomass
KW - Waste management
UR - http://www.scopus.com/inward/record.url?scp=85154072589&partnerID=8YFLogxK
U2 - 10.1186/s42834-023-00176-9
DO - 10.1186/s42834-023-00176-9
M3 - Article
AN - SCOPUS:85154072589
VL - 33
JO - Sustainable Environment Research
JF - Sustainable Environment Research
IS - 1
M1 - 14
ER -