Berger-Coburn Theorem, Localized Operators, and the Toeplitz Algebra

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

Autoren

  • Wolfram Bauer
  • Robert Fulsche

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksOperator Algebras, Toeplitz Operators and Related Topics
Herausgeber/-innenCham Birkhäuser
Herausgeber (Verlag)Springer Nature
Seiten53-77
Seitenumfang25
ISBN (elektronisch)9783030446512
ISBN (Print)9783030446505
PublikationsstatusVeröffentlicht - 2 Sept. 2020

Publikationsreihe

NameOperator Theory: Advances and Applications
Band279
ISSN (Print)0255-0156
ISSN (elektronisch)2296-4878

Abstract

We give a simplified proof of the Berger-Coburn theorem on the boundedness of Toeplitz operators and extend one part of this theorem to the setting of p-Fock spaces (1 ≤ p ≤∞). We present an overview of recent results by various authors on the compactness characterization via the Berezin transform for certain operators acting on the Fock space. Based on these results we present three new characterizations of the Toeplitz C* algebra generated by Toeplitz operators with bounded symbols.

ASJC Scopus Sachgebiete

Zitieren

Berger-Coburn Theorem, Localized Operators, and the Toeplitz Algebra. / Bauer, Wolfram; Fulsche, Robert.
Operator Algebras, Toeplitz Operators and Related Topics. Hrsg. / Cham Birkhäuser. Springer Nature, 2020. S. 53-77 (Operator Theory: Advances and Applications; Band 279).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

Bauer, W & Fulsche, R 2020, Berger-Coburn Theorem, Localized Operators, and the Toeplitz Algebra. in C Birkhäuser (Hrsg.), Operator Algebras, Toeplitz Operators and Related Topics. Operator Theory: Advances and Applications, Bd. 279, Springer Nature, S. 53-77. https://doi.org/10.48550/arXiv.1905.12246, https://doi.org/10.1007/978-3-030-44651-2_8
Bauer, W., & Fulsche, R. (2020). Berger-Coburn Theorem, Localized Operators, and the Toeplitz Algebra. In C. Birkhäuser (Hrsg.), Operator Algebras, Toeplitz Operators and Related Topics (S. 53-77). (Operator Theory: Advances and Applications; Band 279). Springer Nature. https://doi.org/10.48550/arXiv.1905.12246, https://doi.org/10.1007/978-3-030-44651-2_8
Bauer W, Fulsche R. Berger-Coburn Theorem, Localized Operators, and the Toeplitz Algebra. in Birkhäuser C, Hrsg., Operator Algebras, Toeplitz Operators and Related Topics. Springer Nature. 2020. S. 53-77. (Operator Theory: Advances and Applications). doi: 10.48550/arXiv.1905.12246, 10.1007/978-3-030-44651-2_8
Bauer, Wolfram ; Fulsche, Robert. / Berger-Coburn Theorem, Localized Operators, and the Toeplitz Algebra. Operator Algebras, Toeplitz Operators and Related Topics. Hrsg. / Cham Birkhäuser. Springer Nature, 2020. S. 53-77 (Operator Theory: Advances and Applications).
Download
@inbook{16bcae4919cd4da1aef6458394c77795,
title = "Berger-Coburn Theorem, Localized Operators, and the Toeplitz Algebra",
abstract = "We give a simplified proof of the Berger-Coburn theorem on the boundedness of Toeplitz operators and extend one part of this theorem to the setting of p-Fock spaces (1 ≤ p ≤∞). We present an overview of recent results by various authors on the compactness characterization via the Berezin transform for certain operators acting on the Fock space. Based on these results we present three new characterizations of the Toeplitz C* algebra generated by Toeplitz operators with bounded symbols.",
keywords = "Boundedness of Toeplitz operators, Localized operators, Toeplitz algebra",
author = "Wolfram Bauer and Robert Fulsche",
year = "2020",
month = sep,
day = "2",
doi = "10.48550/arXiv.1905.12246",
language = "English",
isbn = "9783030446505",
series = "Operator Theory: Advances and Applications",
publisher = "Springer Nature",
pages = "53--77",
editor = "Cham Birkh{\"a}user",
booktitle = "Operator Algebras, Toeplitz Operators and Related Topics",
address = "United States",

}

Download

TY - CHAP

T1 - Berger-Coburn Theorem, Localized Operators, and the Toeplitz Algebra

AU - Bauer, Wolfram

AU - Fulsche, Robert

PY - 2020/9/2

Y1 - 2020/9/2

N2 - We give a simplified proof of the Berger-Coburn theorem on the boundedness of Toeplitz operators and extend one part of this theorem to the setting of p-Fock spaces (1 ≤ p ≤∞). We present an overview of recent results by various authors on the compactness characterization via the Berezin transform for certain operators acting on the Fock space. Based on these results we present three new characterizations of the Toeplitz C* algebra generated by Toeplitz operators with bounded symbols.

AB - We give a simplified proof of the Berger-Coburn theorem on the boundedness of Toeplitz operators and extend one part of this theorem to the setting of p-Fock spaces (1 ≤ p ≤∞). We present an overview of recent results by various authors on the compactness characterization via the Berezin transform for certain operators acting on the Fock space. Based on these results we present three new characterizations of the Toeplitz C* algebra generated by Toeplitz operators with bounded symbols.

KW - Boundedness of Toeplitz operators

KW - Localized operators

KW - Toeplitz algebra

UR - http://www.scopus.com/inward/record.url?scp=85090624076&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1905.12246

DO - 10.48550/arXiv.1905.12246

M3 - Contribution to book/anthology

AN - SCOPUS:85090624076

SN - 9783030446505

T3 - Operator Theory: Advances and Applications

SP - 53

EP - 77

BT - Operator Algebras, Toeplitz Operators and Related Topics

A2 - Birkhäuser, Cham

PB - Springer Nature

ER -