Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Operator Algebras, Toeplitz Operators and Related Topics |
Herausgeber/-innen | Cham Birkhäuser |
Herausgeber (Verlag) | Springer Nature |
Seiten | 53-77 |
Seitenumfang | 25 |
ISBN (elektronisch) | 9783030446512 |
ISBN (Print) | 9783030446505 |
Publikationsstatus | Veröffentlicht - 2 Sept. 2020 |
Publikationsreihe
Name | Operator Theory: Advances and Applications |
---|---|
Band | 279 |
ISSN (Print) | 0255-0156 |
ISSN (elektronisch) | 2296-4878 |
Abstract
We give a simplified proof of the Berger-Coburn theorem on the boundedness of Toeplitz operators and extend one part of this theorem to the setting of p-Fock spaces (1 ≤ p ≤∞). We present an overview of recent results by various authors on the compactness characterization via the Berezin transform for certain operators acting on the Fock space. Based on these results we present three new characterizations of the Toeplitz C* algebra generated by Toeplitz operators with bounded symbols.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Operator Algebras, Toeplitz Operators and Related Topics. Hrsg. / Cham Birkhäuser. Springer Nature, 2020. S. 53-77 (Operator Theory: Advances and Applications; Band 279).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Beitrag in Buch/Sammelwerk › Forschung › Peer-Review
}
TY - CHAP
T1 - Berger-Coburn Theorem, Localized Operators, and the Toeplitz Algebra
AU - Bauer, Wolfram
AU - Fulsche, Robert
PY - 2020/9/2
Y1 - 2020/9/2
N2 - We give a simplified proof of the Berger-Coburn theorem on the boundedness of Toeplitz operators and extend one part of this theorem to the setting of p-Fock spaces (1 ≤ p ≤∞). We present an overview of recent results by various authors on the compactness characterization via the Berezin transform for certain operators acting on the Fock space. Based on these results we present three new characterizations of the Toeplitz C* algebra generated by Toeplitz operators with bounded symbols.
AB - We give a simplified proof of the Berger-Coburn theorem on the boundedness of Toeplitz operators and extend one part of this theorem to the setting of p-Fock spaces (1 ≤ p ≤∞). We present an overview of recent results by various authors on the compactness characterization via the Berezin transform for certain operators acting on the Fock space. Based on these results we present three new characterizations of the Toeplitz C* algebra generated by Toeplitz operators with bounded symbols.
KW - Boundedness of Toeplitz operators
KW - Localized operators
KW - Toeplitz algebra
UR - http://www.scopus.com/inward/record.url?scp=85090624076&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1905.12246
DO - 10.48550/arXiv.1905.12246
M3 - Contribution to book/anthology
AN - SCOPUS:85090624076
SN - 9783030446505
T3 - Operator Theory: Advances and Applications
SP - 53
EP - 77
BT - Operator Algebras, Toeplitz Operators and Related Topics
A2 - Birkhäuser, Cham
PB - Springer Nature
ER -