Bayesian parameter estimation in the second LISA Pathfinder mock data challenge

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • M. Nofrarias
  • C. Röver
  • M. Hewitson
  • A. Monsky
  • G. Heinzel
  • K. Danzmann
  • L. Ferraioli
  • M. Hueller
  • S. Vitale

Externe Organisationen

  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
  • Università degli Studi di Trento
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer122002
FachzeitschriftPhysical Review D - Particles, Fields, Gravitation and Cosmology
Jahrgang82
Ausgabenummer12
PublikationsstatusVeröffentlicht - 15 Dez. 2010
Extern publiziertJa

Abstract

A main scientific output of the LISA Pathfinder mission is to provide a noise model that can be extended to the future gravitational wave observatory, LISA. The success of the mission depends thus upon a deep understanding of the instrument, especially the ability to correctly determine the parameters of the underlying noise model. In this work we estimate the parameters of a simplified model of the LISA Technology Package instrument. We describe the LISA Technology Package by means of a closed-loop model that is used to generate the data, both injected signals and noise. Then, parameters are estimated using a Bayesian framework, and it is shown that this method reaches the optimal attainable error, the Cramér-Rao bound. We also address an important issue for the mission: how to efficiently combine the results of different experiments to obtain a unique set of parameters describing the instrument.

ASJC Scopus Sachgebiete

Zitieren

Bayesian parameter estimation in the second LISA Pathfinder mock data challenge. / Nofrarias, M.; Röver, C.; Hewitson, M. et al.
in: Physical Review D - Particles, Fields, Gravitation and Cosmology, Jahrgang 82, Nr. 12, 122002, 15.12.2010.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Nofrarias, M, Röver, C, Hewitson, M, Monsky, A, Heinzel, G, Danzmann, K, Ferraioli, L, Hueller, M & Vitale, S 2010, 'Bayesian parameter estimation in the second LISA Pathfinder mock data challenge', Physical Review D - Particles, Fields, Gravitation and Cosmology, Jg. 82, Nr. 12, 122002. https://doi.org/10.1103/PhysRevD.82.122002
Nofrarias, M., Röver, C., Hewitson, M., Monsky, A., Heinzel, G., Danzmann, K., Ferraioli, L., Hueller, M., & Vitale, S. (2010). Bayesian parameter estimation in the second LISA Pathfinder mock data challenge. Physical Review D - Particles, Fields, Gravitation and Cosmology, 82(12), Artikel 122002. https://doi.org/10.1103/PhysRevD.82.122002
Nofrarias M, Röver C, Hewitson M, Monsky A, Heinzel G, Danzmann K et al. Bayesian parameter estimation in the second LISA Pathfinder mock data challenge. Physical Review D - Particles, Fields, Gravitation and Cosmology. 2010 Dez 15;82(12):122002. doi: 10.1103/PhysRevD.82.122002
Download
@article{51e45d29aca9486ab4c2ec41899761c9,
title = "Bayesian parameter estimation in the second LISA Pathfinder mock data challenge",
abstract = "A main scientific output of the LISA Pathfinder mission is to provide a noise model that can be extended to the future gravitational wave observatory, LISA. The success of the mission depends thus upon a deep understanding of the instrument, especially the ability to correctly determine the parameters of the underlying noise model. In this work we estimate the parameters of a simplified model of the LISA Technology Package instrument. We describe the LISA Technology Package by means of a closed-loop model that is used to generate the data, both injected signals and noise. Then, parameters are estimated using a Bayesian framework, and it is shown that this method reaches the optimal attainable error, the Cram{\'e}r-Rao bound. We also address an important issue for the mission: how to efficiently combine the results of different experiments to obtain a unique set of parameters describing the instrument.",
author = "M. Nofrarias and C. R{\"o}ver and M. Hewitson and A. Monsky and G. Heinzel and K. Danzmann and L. Ferraioli and M. Hueller and S. Vitale",
year = "2010",
month = dec,
day = "15",
doi = "10.1103/PhysRevD.82.122002",
language = "English",
volume = "82",
journal = "Physical Review D - Particles, Fields, Gravitation and Cosmology",
issn = "1550-7998",
publisher = "American Institute of Physics",
number = "12",

}

Download

TY - JOUR

T1 - Bayesian parameter estimation in the second LISA Pathfinder mock data challenge

AU - Nofrarias, M.

AU - Röver, C.

AU - Hewitson, M.

AU - Monsky, A.

AU - Heinzel, G.

AU - Danzmann, K.

AU - Ferraioli, L.

AU - Hueller, M.

AU - Vitale, S.

PY - 2010/12/15

Y1 - 2010/12/15

N2 - A main scientific output of the LISA Pathfinder mission is to provide a noise model that can be extended to the future gravitational wave observatory, LISA. The success of the mission depends thus upon a deep understanding of the instrument, especially the ability to correctly determine the parameters of the underlying noise model. In this work we estimate the parameters of a simplified model of the LISA Technology Package instrument. We describe the LISA Technology Package by means of a closed-loop model that is used to generate the data, both injected signals and noise. Then, parameters are estimated using a Bayesian framework, and it is shown that this method reaches the optimal attainable error, the Cramér-Rao bound. We also address an important issue for the mission: how to efficiently combine the results of different experiments to obtain a unique set of parameters describing the instrument.

AB - A main scientific output of the LISA Pathfinder mission is to provide a noise model that can be extended to the future gravitational wave observatory, LISA. The success of the mission depends thus upon a deep understanding of the instrument, especially the ability to correctly determine the parameters of the underlying noise model. In this work we estimate the parameters of a simplified model of the LISA Technology Package instrument. We describe the LISA Technology Package by means of a closed-loop model that is used to generate the data, both injected signals and noise. Then, parameters are estimated using a Bayesian framework, and it is shown that this method reaches the optimal attainable error, the Cramér-Rao bound. We also address an important issue for the mission: how to efficiently combine the results of different experiments to obtain a unique set of parameters describing the instrument.

UR - http://www.scopus.com/inward/record.url?scp=78651284437&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.82.122002

DO - 10.1103/PhysRevD.82.122002

M3 - Article

AN - SCOPUS:78651284437

VL - 82

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

SN - 1550-7998

IS - 12

M1 - 122002

ER -