Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 107954 |
Fachzeitschrift | Mechanical Systems and Signal Processing |
Jahrgang | 162 |
Frühes Online-Datum | 22 Mai 2021 |
Publikationsstatus | Veröffentlicht - 1 Jan. 2022 |
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Steuerungs- und Systemtechnik
- Informatik (insg.)
- Signalverarbeitung
- Ingenieurwesen (insg.)
- Tief- und Ingenieurbau
- Ingenieurwesen (insg.)
- Luft- und Raumfahrttechnik
- Ingenieurwesen (insg.)
- Maschinenbau
- Informatik (insg.)
- Angewandte Informatik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mechanical Systems and Signal Processing, Jahrgang 162, 107954, 01.01.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Bayesian inversion for imprecise probabilistic models using a novel entropy-based uncertainty quantification metric
AU - Yang, Lechang
AU - Bi, Sifeng
AU - Faes, Matthias G.R.
AU - Broggi, Matteo
AU - Beer, Michael
N1 - Funding Information: Dr. Matthias G.R. Faes acknowledges the support of the Research Foundation Flanders (FWO) in the context of his post-doctoral grant 12P3519N, as well as the Alexander von Humboldt foundation. Funding Information: Dr. Lechang Yang acknowledges the support of the National Natural Science Foundation of China under Grant 52005032, the Aeronautical Science Foundation of China under Grant 2018ZC74001, the Fundamental Research Funds for the Central Universities of China under Grant FRF-TP-20-008A2, QNXM20210024 and the China Scholarship Council (CSC) under Grant 201906465064.
PY - 2022/1/1
Y1 - 2022/1/1
KW - Approximate Bayesian computation
KW - Bayesian inverse problem
KW - Entropy
KW - Imprecise probability
KW - Jensen–Shannon divergence
KW - Uncertainty quantification
UR - http://www.scopus.com/inward/record.url?scp=85110273914&partnerID=8YFLogxK
U2 - 10.1016/j.ymssp.2021.107954
DO - 10.1016/j.ymssp.2021.107954
M3 - Article
AN - SCOPUS:85110273914
VL - 162
JO - Mechanical Systems and Signal Processing
JF - Mechanical Systems and Signal Processing
SN - 0888-3270
M1 - 107954
ER -