Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 112804 |
Seitenumfang | 10 |
Fachzeitschrift | Postharvest biology and technology |
Jahrgang | 211 |
Frühes Online-Datum | 2 Feb. 2024 |
Publikationsstatus | Veröffentlicht - Mai 2024 |
Abstract
In Kenya, the mango (Mangifera indica L) cultivar ‘Apple’ is commercially important but it often suffers excessive russeting, which both compromises its appearance and impairs its postharvest performance. Together, these effects seriously reduce its market potential. Exposure to surface moisture is implicated in russeting of cv. ‘Apple’ mango. The objective was to establish the effect of bagging on russeting. Developing fruit were bagged at the onset of the exponential growth phase, using brown paper bags (Blue star®). Un-bagged fruit served as controls. The brown paper bags were selected because of their high permeance to water vapor. At harvest maturity, bagged fruit were larger, less russeted and had smaller lenticels than un-bagged control fruit. Staining with aqueous acridine orange in conjunction with fluorescence microscopy revealed numerous microcracks and larger lenticels on un-bagged control fruit but these were not evident on bagged fruit. Postharvest mass loss (principally water loss) of bagged fruit was lower than of un-bagged control fruit. In the un-bagged control fruit, the skin's water permeance increased as the russeted surface area increased (r2 = 0.88 **). Fruit skins were less permeable to water vapor than the brown paper bags. The brown paper bags contributed not more than 4.2 to 9.1% of the total in-series diffusion resistance of skin + bag. The masses of isolated cuticular membranes, and of dewaxed cuticular membranes, and of wax per unit surface area were higher for un-bagged control fruit than for bagged fruit. Bagged fruit were also greener and showed less blush. There was little difference in skin carotenoid content between bagged and un-bagged control fruit, but skin anthocyanin content was lower in bagged fruit. The rates of respiration and ethylene evolution of bagged fruit were lower than those of un-bagged control fruit. There were no differences between bagged and un-bagged control fruit in their organoleptic and nutritional properties including titratable acidity, total soluble sugars, sucrose, glucose, fructose, vitamin C and calcium content. In conclusion, bagging decreased russeting and increased postharvest performance of fruit of mango cv. ‘Apple’.
ASJC Scopus Sachgebiete
- Agrar- und Biowissenschaften (insg.)
- Lebensmittelwissenschaften
- Agrar- und Biowissenschaften (insg.)
- Agronomie und Nutzpflanzenwissenschaften
- Agrar- und Biowissenschaften (insg.)
- Gartenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Postharvest biology and technology, Jahrgang 211, 112804, 05.2024.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Bagging prevents russeting and decreases postharvest water loss of mango fruit cv. ‘Apple’
AU - Athoo, Thomas O.
AU - Yegon, Dennis
AU - Owino, Willis O.
AU - Knoche, Moritz
N1 - Funding Information: The study was funded by a grant ( KN 402/21-1 ) from the Deutsche Forschungsgemein-schaft .
PY - 2024/5
Y1 - 2024/5
N2 - In Kenya, the mango (Mangifera indica L) cultivar ‘Apple’ is commercially important but it often suffers excessive russeting, which both compromises its appearance and impairs its postharvest performance. Together, these effects seriously reduce its market potential. Exposure to surface moisture is implicated in russeting of cv. ‘Apple’ mango. The objective was to establish the effect of bagging on russeting. Developing fruit were bagged at the onset of the exponential growth phase, using brown paper bags (Blue star®). Un-bagged fruit served as controls. The brown paper bags were selected because of their high permeance to water vapor. At harvest maturity, bagged fruit were larger, less russeted and had smaller lenticels than un-bagged control fruit. Staining with aqueous acridine orange in conjunction with fluorescence microscopy revealed numerous microcracks and larger lenticels on un-bagged control fruit but these were not evident on bagged fruit. Postharvest mass loss (principally water loss) of bagged fruit was lower than of un-bagged control fruit. In the un-bagged control fruit, the skin's water permeance increased as the russeted surface area increased (r2 = 0.88 **). Fruit skins were less permeable to water vapor than the brown paper bags. The brown paper bags contributed not more than 4.2 to 9.1% of the total in-series diffusion resistance of skin + bag. The masses of isolated cuticular membranes, and of dewaxed cuticular membranes, and of wax per unit surface area were higher for un-bagged control fruit than for bagged fruit. Bagged fruit were also greener and showed less blush. There was little difference in skin carotenoid content between bagged and un-bagged control fruit, but skin anthocyanin content was lower in bagged fruit. The rates of respiration and ethylene evolution of bagged fruit were lower than those of un-bagged control fruit. There were no differences between bagged and un-bagged control fruit in their organoleptic and nutritional properties including titratable acidity, total soluble sugars, sucrose, glucose, fructose, vitamin C and calcium content. In conclusion, bagging decreased russeting and increased postharvest performance of fruit of mango cv. ‘Apple’.
AB - In Kenya, the mango (Mangifera indica L) cultivar ‘Apple’ is commercially important but it often suffers excessive russeting, which both compromises its appearance and impairs its postharvest performance. Together, these effects seriously reduce its market potential. Exposure to surface moisture is implicated in russeting of cv. ‘Apple’ mango. The objective was to establish the effect of bagging on russeting. Developing fruit were bagged at the onset of the exponential growth phase, using brown paper bags (Blue star®). Un-bagged fruit served as controls. The brown paper bags were selected because of their high permeance to water vapor. At harvest maturity, bagged fruit were larger, less russeted and had smaller lenticels than un-bagged control fruit. Staining with aqueous acridine orange in conjunction with fluorescence microscopy revealed numerous microcracks and larger lenticels on un-bagged control fruit but these were not evident on bagged fruit. Postharvest mass loss (principally water loss) of bagged fruit was lower than of un-bagged control fruit. In the un-bagged control fruit, the skin's water permeance increased as the russeted surface area increased (r2 = 0.88 **). Fruit skins were less permeable to water vapor than the brown paper bags. The brown paper bags contributed not more than 4.2 to 9.1% of the total in-series diffusion resistance of skin + bag. The masses of isolated cuticular membranes, and of dewaxed cuticular membranes, and of wax per unit surface area were higher for un-bagged control fruit than for bagged fruit. Bagged fruit were also greener and showed less blush. There was little difference in skin carotenoid content between bagged and un-bagged control fruit, but skin anthocyanin content was lower in bagged fruit. The rates of respiration and ethylene evolution of bagged fruit were lower than those of un-bagged control fruit. There were no differences between bagged and un-bagged control fruit in their organoleptic and nutritional properties including titratable acidity, total soluble sugars, sucrose, glucose, fructose, vitamin C and calcium content. In conclusion, bagging decreased russeting and increased postharvest performance of fruit of mango cv. ‘Apple’.
KW - Bag
KW - Cuticle
KW - Lenticel
KW - Periderm
KW - Permeance
KW - Quality
KW - Russet
KW - Transpiration
UR - http://www.scopus.com/inward/record.url?scp=85183981726&partnerID=8YFLogxK
U2 - 10.1016/j.postharvbio.2024.112804
DO - 10.1016/j.postharvbio.2024.112804
M3 - Article
AN - SCOPUS:85183981726
VL - 211
JO - Postharvest biology and technology
JF - Postharvest biology and technology
SN - 0925-5214
M1 - 112804
ER -