Loading [MathJax]/extensions/tex2jax.js

Backdoors for Linear Temporal Logic

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Arne Meier
  • Sebastian Ordyniak
  • M. S. Ramanujan
  • Irena Schindler

Externe Organisationen

  • The University of Sheffield
  • Technische Universität Wien (TUW)

Details

OriginalspracheEnglisch
Seiten (von - bis)476-496
Seitenumfang21
FachzeitschriftALGORITHMICA
Jahrgang81
Ausgabenummer2
Frühes Online-Datum18 Sept. 2018
PublikationsstatusVeröffentlicht - 15 Feb. 2019

Abstract

In the present paper, we introduce the backdoor set approach into the field of temporal logic for the global fragment of linear temporal logic. We study the parameterized complexity of the satisfiability problem parameterized by the size of the backdoor. We distinguish between backdoor detection and evaluation of backdoors into the fragments of Horn and Krom formulas. Here we classify the operator fragments of globally-operators for past/future/always, and the combination of them. Detection is shown to be fixed-parameter tractable whereas the complexity of evaluation behaves differently. We show that for Krom formulas the problem is paraNP-complete. For Horn formulas, the complexity is shown to be either fixed parameter tractable or paraNP-complete depending on the considered operator fragment.

ASJC Scopus Sachgebiete

Zitieren

Backdoors for Linear Temporal Logic. / Meier, Arne; Ordyniak, Sebastian; Ramanujan, M. S. et al.
in: ALGORITHMICA, Jahrgang 81, Nr. 2, 15.02.2019, S. 476-496.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Meier, A, Ordyniak, S, Ramanujan, MS & Schindler, I 2019, 'Backdoors for Linear Temporal Logic', ALGORITHMICA, Jg. 81, Nr. 2, S. 476-496. https://doi.org/10.1007/s00453-018-0515-5, https://doi.org/10.15488/1267
Meier A, Ordyniak S, Ramanujan MS, Schindler I. Backdoors for Linear Temporal Logic. ALGORITHMICA. 2019 Feb 15;81(2):476-496. Epub 2018 Sep 18. doi: 10.1007/s00453-018-0515-5, 10.15488/1267
Meier, Arne ; Ordyniak, Sebastian ; Ramanujan, M. S. et al. / Backdoors for Linear Temporal Logic. in: ALGORITHMICA. 2019 ; Jahrgang 81, Nr. 2. S. 476-496.
Download
@article{1149b8f4808f431cb225c4e45ad7ab00,
title = "Backdoors for Linear Temporal Logic",
abstract = "In the present paper, we introduce the backdoor set approach into the field of temporal logic for the global fragment of linear temporal logic. We study the parameterized complexity of the satisfiability problem parameterized by the size of the backdoor. We distinguish between backdoor detection and evaluation of backdoors into the fragments of Horn and Krom formulas. Here we classify the operator fragments of globally-operators for past/future/always, and the combination of them. Detection is shown to be fixed-parameter tractable whereas the complexity of evaluation behaves differently. We show that for Krom formulas the problem is paraNP-complete. For Horn formulas, the complexity is shown to be either fixed parameter tractable or paraNP-complete depending on the considered operator fragment.",
keywords = "Backdoor sets, Linear temporal logic, Parameterized complexity",
author = "Arne Meier and Sebastian Ordyniak and Ramanujan, {M. S.} and Irena Schindler",
note = "Funding Information: The first and last author gratefully acknowledge the support by the German Research Foundation DFG for their grant ME 4279/1-1. The second and third author acknowledge support by the Austrian Science Fund (FWF, project P26696). We thank the anonymous referees for their valuable comments.",
year = "2019",
month = feb,
day = "15",
doi = "10.1007/s00453-018-0515-5",
language = "English",
volume = "81",
pages = "476--496",
journal = "ALGORITHMICA",
issn = "0178-4617",
publisher = "Springer New York",
number = "2",

}

Download

TY - JOUR

T1 - Backdoors for Linear Temporal Logic

AU - Meier, Arne

AU - Ordyniak, Sebastian

AU - Ramanujan, M. S.

AU - Schindler, Irena

N1 - Funding Information: The first and last author gratefully acknowledge the support by the German Research Foundation DFG for their grant ME 4279/1-1. The second and third author acknowledge support by the Austrian Science Fund (FWF, project P26696). We thank the anonymous referees for their valuable comments.

PY - 2019/2/15

Y1 - 2019/2/15

N2 - In the present paper, we introduce the backdoor set approach into the field of temporal logic for the global fragment of linear temporal logic. We study the parameterized complexity of the satisfiability problem parameterized by the size of the backdoor. We distinguish between backdoor detection and evaluation of backdoors into the fragments of Horn and Krom formulas. Here we classify the operator fragments of globally-operators for past/future/always, and the combination of them. Detection is shown to be fixed-parameter tractable whereas the complexity of evaluation behaves differently. We show that for Krom formulas the problem is paraNP-complete. For Horn formulas, the complexity is shown to be either fixed parameter tractable or paraNP-complete depending on the considered operator fragment.

AB - In the present paper, we introduce the backdoor set approach into the field of temporal logic for the global fragment of linear temporal logic. We study the parameterized complexity of the satisfiability problem parameterized by the size of the backdoor. We distinguish between backdoor detection and evaluation of backdoors into the fragments of Horn and Krom formulas. Here we classify the operator fragments of globally-operators for past/future/always, and the combination of them. Detection is shown to be fixed-parameter tractable whereas the complexity of evaluation behaves differently. We show that for Krom formulas the problem is paraNP-complete. For Horn formulas, the complexity is shown to be either fixed parameter tractable or paraNP-complete depending on the considered operator fragment.

KW - Backdoor sets

KW - Linear temporal logic

KW - Parameterized complexity

UR - http://www.scopus.com/inward/record.url?scp=85053691943&partnerID=8YFLogxK

U2 - 10.1007/s00453-018-0515-5

DO - 10.1007/s00453-018-0515-5

M3 - Article

AN - SCOPUS:85053691943

VL - 81

SP - 476

EP - 496

JO - ALGORITHMICA

JF - ALGORITHMICA

SN - 0178-4617

IS - 2

ER -

Von denselben Autoren