Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 300-309 |
Seitenumfang | 10 |
Fachzeitschrift | Optics communications |
Jahrgang | 261 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 27 Dez. 2005 |
Abstract
The generation of watt-level cw narrow-linewidth sources at specific deep-UV wavelengths corresponding to atomic cooling transitions usually employs external cavity-enhanced second-harmonic generation (SHG) of moderate-power visible lasers in birefringent materials. Among the oxo-borate materials, barium borate (β-BaB2O4 or BBO) combines the highest UV band edge and largest nonlinearity but suffers from large walk-off angles that limits the nonlinear interaction length. Alternative quasi-phase-matched (QPM) ferroelectrics are hardly suited for cavity-enhanced operation due to their much larger UV absorption and associated photo-refractive and thermal lensing effects, in addition to the difficult fabrication of fine-pitch domain gratings for short UV coherence lengths. In this work, we investigate an alternative approach to cw deep-UV generation by employing the low-loss BBO in a monolithic walk-off compensating structure [J.-J. Zondy, Ch. Bonnin, D. Lupinski, J. Opt. Soc. Am. B 20 (2003) 1675] to simultaneously enhance the effective nonlinear coefficient while minimizing the UV beam ellipticity under tight focusing. As a preliminary step to cavity-enhanced operation, and in order to apprehend the design difficulties stemming from the extremely low acceptance angle of BBO, we investigate and analyze the single-pass performance of a Lc = 8 mm monolithic walk-off compensating structure made of 2 optically-contacted BBO plates cut for type-I critically phase-matched SHG of a cw λ = 570.4 nm dye laser. As compared with a bulk crystal of identical length, a sharp UV efficiency enhancement factor of 1.65 has been evidenced with the tandem structure, but at ∼-1 nm from the targeted fundamental wavelength, highlighting the sensitivity of this technique when applied to a highly birefringent material such as BBO. Solutions to angle cut residual errors are identified so as to match accurately more complex periodic-tandem structure performance to any target UV wavelength, opening the prospect for high-power, good beam quality deep-UV cw laser sources for atom cooling and trapping.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Chemie (insg.)
- Physikalische und Theoretische Chemie
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Optics communications, Jahrgang 261, Nr. 2, 27.12.2005, S. 300-309.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - β-BaB2O4 deep UV monolithic walk-off compensating tandem
AU - Friebe, J.
AU - Moldenhauer, K.
AU - Rasel, E. M.
AU - Ertmer, W.
AU - Isaenko, L.
AU - Yelisseyev, A.
AU - Zondy, J. J.
PY - 2005/12/27
Y1 - 2005/12/27
N2 - The generation of watt-level cw narrow-linewidth sources at specific deep-UV wavelengths corresponding to atomic cooling transitions usually employs external cavity-enhanced second-harmonic generation (SHG) of moderate-power visible lasers in birefringent materials. Among the oxo-borate materials, barium borate (β-BaB2O4 or BBO) combines the highest UV band edge and largest nonlinearity but suffers from large walk-off angles that limits the nonlinear interaction length. Alternative quasi-phase-matched (QPM) ferroelectrics are hardly suited for cavity-enhanced operation due to their much larger UV absorption and associated photo-refractive and thermal lensing effects, in addition to the difficult fabrication of fine-pitch domain gratings for short UV coherence lengths. In this work, we investigate an alternative approach to cw deep-UV generation by employing the low-loss BBO in a monolithic walk-off compensating structure [J.-J. Zondy, Ch. Bonnin, D. Lupinski, J. Opt. Soc. Am. B 20 (2003) 1675] to simultaneously enhance the effective nonlinear coefficient while minimizing the UV beam ellipticity under tight focusing. As a preliminary step to cavity-enhanced operation, and in order to apprehend the design difficulties stemming from the extremely low acceptance angle of BBO, we investigate and analyze the single-pass performance of a Lc = 8 mm monolithic walk-off compensating structure made of 2 optically-contacted BBO plates cut for type-I critically phase-matched SHG of a cw λ = 570.4 nm dye laser. As compared with a bulk crystal of identical length, a sharp UV efficiency enhancement factor of 1.65 has been evidenced with the tandem structure, but at ∼-1 nm from the targeted fundamental wavelength, highlighting the sensitivity of this technique when applied to a highly birefringent material such as BBO. Solutions to angle cut residual errors are identified so as to match accurately more complex periodic-tandem structure performance to any target UV wavelength, opening the prospect for high-power, good beam quality deep-UV cw laser sources for atom cooling and trapping.
AB - The generation of watt-level cw narrow-linewidth sources at specific deep-UV wavelengths corresponding to atomic cooling transitions usually employs external cavity-enhanced second-harmonic generation (SHG) of moderate-power visible lasers in birefringent materials. Among the oxo-borate materials, barium borate (β-BaB2O4 or BBO) combines the highest UV band edge and largest nonlinearity but suffers from large walk-off angles that limits the nonlinear interaction length. Alternative quasi-phase-matched (QPM) ferroelectrics are hardly suited for cavity-enhanced operation due to their much larger UV absorption and associated photo-refractive and thermal lensing effects, in addition to the difficult fabrication of fine-pitch domain gratings for short UV coherence lengths. In this work, we investigate an alternative approach to cw deep-UV generation by employing the low-loss BBO in a monolithic walk-off compensating structure [J.-J. Zondy, Ch. Bonnin, D. Lupinski, J. Opt. Soc. Am. B 20 (2003) 1675] to simultaneously enhance the effective nonlinear coefficient while minimizing the UV beam ellipticity under tight focusing. As a preliminary step to cavity-enhanced operation, and in order to apprehend the design difficulties stemming from the extremely low acceptance angle of BBO, we investigate and analyze the single-pass performance of a Lc = 8 mm monolithic walk-off compensating structure made of 2 optically-contacted BBO plates cut for type-I critically phase-matched SHG of a cw λ = 570.4 nm dye laser. As compared with a bulk crystal of identical length, a sharp UV efficiency enhancement factor of 1.65 has been evidenced with the tandem structure, but at ∼-1 nm from the targeted fundamental wavelength, highlighting the sensitivity of this technique when applied to a highly birefringent material such as BBO. Solutions to angle cut residual errors are identified so as to match accurately more complex periodic-tandem structure performance to any target UV wavelength, opening the prospect for high-power, good beam quality deep-UV cw laser sources for atom cooling and trapping.
KW - Type-I monolithic walk-off compensation
KW - UV atom cooling and trapping
KW - UV cw second-harmonic generation
UR - http://www.scopus.com/inward/record.url?scp=33646063546&partnerID=8YFLogxK
U2 - 10.1016/j.optcom.2005.12.008
DO - 10.1016/j.optcom.2005.12.008
M3 - Article
AN - SCOPUS:33646063546
VL - 261
SP - 300
EP - 309
JO - Optics communications
JF - Optics communications
SN - 0030-4018
IS - 2
ER -