Auxiliary function development for the LISA metrology system

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Nils Christopher Brause

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
  • Karsten Danzmann, Betreuer*in
Datum der Verleihung des Grades2 Mai 2018
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2018

Abstract

Die Laser Interferometer Space Antenna (LISA) ist ein geplanter Gravitationswellendetektor, der im Weltraum stationiert werden soll. Sie besteht aus drei Satelliten, die Long Range Interferometry (LRI) nutzen um relative Abstandsänderungen zwischen ihnen zu messen. Eine wichtige Komponente von LISA ist das LISA Metrology System (LMS), welches für die Abstandsmessungen sowie diverse Hilfsfunktionen zuständig ist: Die Beatnote Acquisition ermöglicht dem LMS sich auf eine eingehende Beatnote unbekannter Frequenz und Amplitude zu locken. Sie misst beides mit einer Fast Fourier Transform (FFT) und kontrolliert damit die Startfrequenz und Gains der Digital Phase Locked Loops (DPLLs). Der Laser Lock Algorithmus wird benutzt um die Frequenz eines Lasers auf die eines anderen zu stabilisieren. Dies wird erreicht indem der Frequenzunterschied beider Laser konstant gehalten wird, wodurch Heterodyninterferometrie ermöglicht wird. Die Amplitude des Eingangssignals variiert stark im Laufe der Zeit. Um dem entgegenzuwirken folgt der Automatic Gain Control (AGC) der Amplitude und passt die Gains der DPLLs laufend an. In LISA wird die Richtung der Laserstrahlen mit Hilfe eines weiterentwickelten Differential Wavefront Sensing (DWS) Schemas gemessen, das die differentiellen Phasen zwischen den Segmenten der Quadrant Photo Diode (QPD) direkt misst. Dies verbessert die Carrier to Noise Density Ratio (CNR) in den DPLLs um einen Faktor 2. Der absolute Abstand zwischen den Satelliten wird ebenfalls gemessen um im Postprocessing Time-Delay Interferometry (TDI) zu ermöglichen. Dies wird erreicht indem ein Pseudo Random Noise (PRN) Code über die Laserverbindung zu einem entfernten Satelliten geschickt wird, wo er mit einer lokalen Version davon korreliert und so die Entfernung aus der gemessenen Verzögerung berechnet wird. Da nur einer der drei LISA Satelliten eine Funkverbindung zur Erde hat, müssen die Daten zwischen den Satelliten transferiert werden. Diese Funktionalität ist Teil der Delay Locked Loop (DLL), indem die Daten auf den PRN Code aufmoduliert werden. Im Laufe dieser Doktorarbeit werden alle nötigen Hilfsfunktionen entwickelt, vollständig vorgestellt und vermessen.

Zitieren

Auxiliary function development for the LISA metrology system. / Brause, Nils Christopher.
Hannover, 2018. 186 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Brause, NC 2018, 'Auxiliary function development for the LISA metrology system', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/3511
Brause, N. C. (2018). Auxiliary function development for the LISA metrology system. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/3511
Brause NC. Auxiliary function development for the LISA metrology system. Hannover, 2018. 186 S. doi: 10.15488/3511
Brause, Nils Christopher. / Auxiliary function development for the LISA metrology system. Hannover, 2018. 186 S.
Download
@phdthesis{1dc62d87d0674541b27e0c6d202f7ae8,
title = "Auxiliary function development for the LISA metrology system",
abstract = "The Laser Interferometer Space Antenna (LISA) is a planned gravitational wave detector to be positioned in space. It consists of three spacecrafts that use Long Range Interferometry (LRI) to measure relative distance changes between them. An important component of LISA is the LISA Metrology System (LMS) which is responsible for the distance measurements as well as various auxiliary functions: The beatnote acquisition allows the LMS to lock to an incoming beatnote signal with an unknown frequency and amplitude. It measures both with a Fast FourierbTransform (FFT) and controls the starting frequencies and gains of the Digital Phase Locked Loops (DPLLs) accordingly. The laser locking algorithm is used to lock the frequency of one laser to the frequency of another laser. This is done by locking the difference frequency between two lasers to a constant target and thus enabling heterodyne interferometry. The amplitude of the incoming beatnote signal can vary greatly over time. To compensate for that, the Automatic Gain Control (AGC) functionality observes the amplitudes and reconfigures the gains of the DPLLs accordingly. In LISA the pointing will be measured using an advanced Differential Wavefront Sensing (DWS) scheme, which track the differential phases between the segments of a Quadrant Photo Diode (QPD) directly instead of calculating them from the measured phases of the segment DPLLs. This improves the Carrier to Noise Density Ratio (CNR) in the DPLLs by a factor of two. The absolute distance between the spacecrafts is also measured to enable Time-Delay Interferometry (TDI) in post-processing. This is done by sending a Pseudo-Random Noise (PRN) code via the laser link to a distant spacecraft, where it is correlated with a local copy of the same PRN code to determine the travel distance from the measured delay. Since only one of the three LISA spacecrafts has a radio link to earth, data has to be transferred between the three spacecrafts. This functionality is part of the Delay Locked Loop (DLL), by modulating the data onto the PRN code. In the course of this thesis, all the necessary auxiliary functions will be developed, thoroughly described and measured.",
author = "Brause, {Nils Christopher}",
note = "Doctoral thesis",
year = "2018",
doi = "10.15488/3511",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Auxiliary function development for the LISA metrology system

AU - Brause, Nils Christopher

N1 - Doctoral thesis

PY - 2018

Y1 - 2018

N2 - The Laser Interferometer Space Antenna (LISA) is a planned gravitational wave detector to be positioned in space. It consists of three spacecrafts that use Long Range Interferometry (LRI) to measure relative distance changes between them. An important component of LISA is the LISA Metrology System (LMS) which is responsible for the distance measurements as well as various auxiliary functions: The beatnote acquisition allows the LMS to lock to an incoming beatnote signal with an unknown frequency and amplitude. It measures both with a Fast FourierbTransform (FFT) and controls the starting frequencies and gains of the Digital Phase Locked Loops (DPLLs) accordingly. The laser locking algorithm is used to lock the frequency of one laser to the frequency of another laser. This is done by locking the difference frequency between two lasers to a constant target and thus enabling heterodyne interferometry. The amplitude of the incoming beatnote signal can vary greatly over time. To compensate for that, the Automatic Gain Control (AGC) functionality observes the amplitudes and reconfigures the gains of the DPLLs accordingly. In LISA the pointing will be measured using an advanced Differential Wavefront Sensing (DWS) scheme, which track the differential phases between the segments of a Quadrant Photo Diode (QPD) directly instead of calculating them from the measured phases of the segment DPLLs. This improves the Carrier to Noise Density Ratio (CNR) in the DPLLs by a factor of two. The absolute distance between the spacecrafts is also measured to enable Time-Delay Interferometry (TDI) in post-processing. This is done by sending a Pseudo-Random Noise (PRN) code via the laser link to a distant spacecraft, where it is correlated with a local copy of the same PRN code to determine the travel distance from the measured delay. Since only one of the three LISA spacecrafts has a radio link to earth, data has to be transferred between the three spacecrafts. This functionality is part of the Delay Locked Loop (DLL), by modulating the data onto the PRN code. In the course of this thesis, all the necessary auxiliary functions will be developed, thoroughly described and measured.

AB - The Laser Interferometer Space Antenna (LISA) is a planned gravitational wave detector to be positioned in space. It consists of three spacecrafts that use Long Range Interferometry (LRI) to measure relative distance changes between them. An important component of LISA is the LISA Metrology System (LMS) which is responsible for the distance measurements as well as various auxiliary functions: The beatnote acquisition allows the LMS to lock to an incoming beatnote signal with an unknown frequency and amplitude. It measures both with a Fast FourierbTransform (FFT) and controls the starting frequencies and gains of the Digital Phase Locked Loops (DPLLs) accordingly. The laser locking algorithm is used to lock the frequency of one laser to the frequency of another laser. This is done by locking the difference frequency between two lasers to a constant target and thus enabling heterodyne interferometry. The amplitude of the incoming beatnote signal can vary greatly over time. To compensate for that, the Automatic Gain Control (AGC) functionality observes the amplitudes and reconfigures the gains of the DPLLs accordingly. In LISA the pointing will be measured using an advanced Differential Wavefront Sensing (DWS) scheme, which track the differential phases between the segments of a Quadrant Photo Diode (QPD) directly instead of calculating them from the measured phases of the segment DPLLs. This improves the Carrier to Noise Density Ratio (CNR) in the DPLLs by a factor of two. The absolute distance between the spacecrafts is also measured to enable Time-Delay Interferometry (TDI) in post-processing. This is done by sending a Pseudo-Random Noise (PRN) code via the laser link to a distant spacecraft, where it is correlated with a local copy of the same PRN code to determine the travel distance from the measured delay. Since only one of the three LISA spacecrafts has a radio link to earth, data has to be transferred between the three spacecrafts. This functionality is part of the Delay Locked Loop (DLL), by modulating the data onto the PRN code. In the course of this thesis, all the necessary auxiliary functions will be developed, thoroughly described and measured.

U2 - 10.15488/3511

DO - 10.15488/3511

M3 - Doctoral thesis

CY - Hannover

ER -