Automorphisms of Salem degree 22 on supersingular K3 surfaces of higher Artin invariant

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Simon Brandhorst

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1143-1150
Seitenumfang8
FachzeitschriftMathematical research letters
Jahrgang25
Ausgabenummer4
PublikationsstatusVeröffentlicht - 16 Nov. 2018

Abstract

We give a short proof that every supersingular K3 surface (except possibly in characteristic 2 with Artin invariant σ = 10) has an automorphism of Salem degree 22. In particular an infinite subgroup of the automorphism group does not lift to characteristic zero. The proof relies on the case σ = 1 and the cone conjecture for K3 surfaces.

Zitieren

Automorphisms of Salem degree 22 on supersingular K3 surfaces of higher Artin invariant. / Brandhorst, Simon.
in: Mathematical research letters, Jahrgang 25, Nr. 4, 16.11.2018, S. 1143-1150.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Brandhorst S. Automorphisms of Salem degree 22 on supersingular K3 surfaces of higher Artin invariant. Mathematical research letters. 2018 Nov 16;25(4):1143-1150. doi: 10.48550/arXiv.1609.02348, 10.4310/mrl.2018.v25.n4.a4
Download
@article{c51e0fe5b336496e920729fa5033af26,
title = "Automorphisms of Salem degree 22 on supersingular K3 surfaces of higher Artin invariant",
abstract = "We give a short proof that every supersingular K3 surface (except possibly in characteristic 2 with Artin invariant σ = 10) has an automorphism of Salem degree 22. In particular an infinite subgroup of the automorphism group does not lift to characteristic zero. The proof relies on the case σ = 1 and the cone conjecture for K3 surfaces.",
author = "Simon Brandhorst",
year = "2018",
month = nov,
day = "16",
doi = "10.48550/arXiv.1609.02348",
language = "English",
volume = "25",
pages = "1143--1150",
journal = "Mathematical research letters",
issn = "1073-2780",
publisher = "International Press of Boston, Inc.",
number = "4",

}

Download

TY - JOUR

T1 - Automorphisms of Salem degree 22 on supersingular K3 surfaces of higher Artin invariant

AU - Brandhorst, Simon

PY - 2018/11/16

Y1 - 2018/11/16

N2 - We give a short proof that every supersingular K3 surface (except possibly in characteristic 2 with Artin invariant σ = 10) has an automorphism of Salem degree 22. In particular an infinite subgroup of the automorphism group does not lift to characteristic zero. The proof relies on the case σ = 1 and the cone conjecture for K3 surfaces.

AB - We give a short proof that every supersingular K3 surface (except possibly in characteristic 2 with Artin invariant σ = 10) has an automorphism of Salem degree 22. In particular an infinite subgroup of the automorphism group does not lift to characteristic zero. The proof relies on the case σ = 1 and the cone conjecture for K3 surfaces.

UR - http://www.scopus.com/inward/record.url?scp=85057096125&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1609.02348

DO - 10.48550/arXiv.1609.02348

M3 - Article

AN - SCOPUS:85057096125

VL - 25

SP - 1143

EP - 1150

JO - Mathematical research letters

JF - Mathematical research letters

SN - 1073-2780

IS - 4

ER -