Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1143-1150 |
Seitenumfang | 8 |
Fachzeitschrift | Mathematical research letters |
Jahrgang | 25 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 16 Nov. 2018 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematical research letters, Jahrgang 25, Nr. 4, 16.11.2018, S. 1143-1150.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Automorphisms of Salem degree 22 on supersingular K3 surfaces of higher Artin invariant
AU - Brandhorst, Simon
PY - 2018/11/16
Y1 - 2018/11/16
N2 - We give a short proof that every supersingular K3 surface (except possibly in characteristic 2 with Artin invariant σ = 10) has an automorphism of Salem degree 22. In particular an infinite subgroup of the automorphism group does not lift to characteristic zero. The proof relies on the case σ = 1 and the cone conjecture for K3 surfaces.
AB - We give a short proof that every supersingular K3 surface (except possibly in characteristic 2 with Artin invariant σ = 10) has an automorphism of Salem degree 22. In particular an infinite subgroup of the automorphism group does not lift to characteristic zero. The proof relies on the case σ = 1 and the cone conjecture for K3 surfaces.
UR - http://www.scopus.com/inward/record.url?scp=85057096125&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1609.02348
DO - 10.48550/arXiv.1609.02348
M3 - Article
AN - SCOPUS:85057096125
VL - 25
SP - 1143
EP - 1150
JO - Mathematical research letters
JF - Mathematical research letters
SN - 1073-2780
IS - 4
ER -