Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 044402 |
Seitenumfang | 11 |
Fachzeitschrift | AVS Quantum Science |
Jahrgang | 5 |
Ausgabenummer | 4 |
Frühes Online-Datum | 14 Nov. 2023 |
Publikationsstatus | Veröffentlicht - Dez. 2023 |
Abstract
Single-photon transitions are one of the key technologies for designing and operating very-long-baseline atom interferometers tailored for terrestrial gravitational-wave and dark-matter detection. Since such setups aim at the detection of relativistic and beyond-Standard-Model physics, the analysis of interferometric phases as well as of atomic diffraction must be performed to this precision and including these effects. In contrast, most treatments focused on idealized diffraction so far. Here, we study single-photon transitions, both magnetically induced and direct ones, in gravity and Standard-Model extensions modeling dark matter as well as Einstein-equivalence-principle violations. We take into account relativistic effects like the coupling of internal to center-of-mass degrees of freedom, induced by the mass defect, as well as the gravitational redshift of the diffracting light pulse. To this end, we also include chirping of the light pulse required by terrestrial setups, as well as its associated modified momentum transfer for single-photon transitions.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Informatik (insg.)
- Computernetzwerke und -kommunikation
- Chemie (insg.)
- Physikalische und Theoretische Chemie
- Informatik (insg.)
- Theoretische Informatik und Mathematik
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: AVS Quantum Science, Jahrgang 5, Nr. 4, 044402, 12.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions
AU - Bott, Alexander
AU - Di Pumpo, Fabio
AU - Giese, Enno
N1 - Funding Information: We are grateful to W. P. Schleich for his stimulating input and continuing support. We also thank O. Buchmüller, A. Friedrich, J. Rudolph, and C. Ufrecht as well as the QUANTUS and INTENTAS teams for fruitful and interesting discussions. The QUANTUS and INTENTAS projects are supported by the German Space Agency at the German Aerospace Center (Deutsche Raumfahrtagentur im Deutschen Zentrum für Luft- und Raumfahrt, DLR) with funds provided by the Federal Ministry for Economic Affairs and Climate Action (Bundesministerium für Wirtschaft und Klimaschutz, BMWK) due to an enactment of the German Bundestag under Grant Nos. 50WM1956 (QUANTUS V), 50WM2250D-2250E (QUANTUS+), as well as 50WM2177–2178 (INTENTAS). The projects “Metrology with interfering Unruh-DeWitt detectors” (MIUnD) and “Building composite particles from quantum field theory on dilaton gravity” (BOnD) are funded by the Carl Zeiss Foundation (Carl-Zeiss-Stiftung). The Qu-Gov project in cooperation with “Bundesdruckerei GmbH” is supported by the Federal Ministry of Finance (Bundesministerium der Finanzen, BMF). F.D.P. is grateful to the financial support program for early career researchers of the Graduate & Professional Training Center at Ulm University and for its funding of the project “Long-Baseline-Atominterferometer Gravity and Standard-Model Extensions tests” (LArGE). E.G. thanks the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for a Mercator Fellowship within CRC 1227 (DQ-mat).
PY - 2023/12
Y1 - 2023/12
N2 - Single-photon transitions are one of the key technologies for designing and operating very-long-baseline atom interferometers tailored for terrestrial gravitational-wave and dark-matter detection. Since such setups aim at the detection of relativistic and beyond-Standard-Model physics, the analysis of interferometric phases as well as of atomic diffraction must be performed to this precision and including these effects. In contrast, most treatments focused on idealized diffraction so far. Here, we study single-photon transitions, both magnetically induced and direct ones, in gravity and Standard-Model extensions modeling dark matter as well as Einstein-equivalence-principle violations. We take into account relativistic effects like the coupling of internal to center-of-mass degrees of freedom, induced by the mass defect, as well as the gravitational redshift of the diffracting light pulse. To this end, we also include chirping of the light pulse required by terrestrial setups, as well as its associated modified momentum transfer for single-photon transitions.
AB - Single-photon transitions are one of the key technologies for designing and operating very-long-baseline atom interferometers tailored for terrestrial gravitational-wave and dark-matter detection. Since such setups aim at the detection of relativistic and beyond-Standard-Model physics, the analysis of interferometric phases as well as of atomic diffraction must be performed to this precision and including these effects. In contrast, most treatments focused on idealized diffraction so far. Here, we study single-photon transitions, both magnetically induced and direct ones, in gravity and Standard-Model extensions modeling dark matter as well as Einstein-equivalence-principle violations. We take into account relativistic effects like the coupling of internal to center-of-mass degrees of freedom, induced by the mass defect, as well as the gravitational redshift of the diffracting light pulse. To this end, we also include chirping of the light pulse required by terrestrial setups, as well as its associated modified momentum transfer for single-photon transitions.
UR - http://www.scopus.com/inward/record.url?scp=85176606156&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2309.02051
DO - 10.48550/arXiv.2309.02051
M3 - Article
AN - SCOPUS:85176606156
VL - 5
JO - AVS Quantum Science
JF - AVS Quantum Science
IS - 4
M1 - 044402
ER -