Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 76-95 |
Seitenumfang | 20 |
Fachzeitschrift | Nagoya mathematical journal |
Jahrgang | 232 |
Frühes Online-Datum | 31 Mai 2017 |
Publikationsstatus | Veröffentlicht - Dez. 2018 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Nagoya mathematical journal, Jahrgang 232, 12.2018, S. 76-95.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - At most 64 lines on smooth quartic surfaces (characteristic 2)
AU - Rams, Sławomir
AU - Schütt, Matthias
N1 - Funding information: Rams was partially supported by National Science Centre, Poland, grant 2014/15/B/ST1/02197. Schütt gratefully acknowledges funding by European Research Council under StG 279723 (SURFARI).
PY - 2018/12
Y1 - 2018/12
N2 - Let be a field of characteristic 2. We give a geometric proof that there are no smooth quartic surfaces S ⊂ ℙ3 k with more than 64 lines (predating work of Degtyarev which improves this bound to 60). We also exhibit a smooth quartic containing 60 lines which thus attains the record in characteristic.
AB - Let be a field of characteristic 2. We give a geometric proof that there are no smooth quartic surfaces S ⊂ ℙ3 k with more than 64 lines (predating work of Degtyarev which improves this bound to 60). We also exhibit a smooth quartic containing 60 lines which thus attains the record in characteristic.
UR - http://www.scopus.com/inward/record.url?scp=85060246232&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1512.01358
DO - 10.48550/arXiv.1512.01358
M3 - Article
AN - SCOPUS:85060246232
VL - 232
SP - 76
EP - 95
JO - Nagoya mathematical journal
JF - Nagoya mathematical journal
SN - 0027-7630
ER -