Details
Originalsprache | Englisch |
---|---|
Seiten | 269-280 |
Seitenumfang | 12 |
Publikationsstatus | Elektronisch veröffentlicht (E-Pub) - 24 Nov. 2008 |
Veranstaltung | 2004 ASME Turbo Expo - Vienna, Österreich Dauer: 14 Juni 2004 → 17 Juni 2004 |
Konferenz
Konferenz | 2004 ASME Turbo Expo |
---|---|
Land/Gebiet | Österreich |
Ort | Vienna |
Zeitraum | 14 Juni 2004 → 17 Juni 2004 |
Abstract
During operation, the rotating blades of a gas turbine are subjected to centrifugal forces as well as fluctuating gas forces, resulting in blade vibrations. In addition to material damping, aerodynamical and blade root damping, underplatform dampers are widely used to increase the amount of damping and to decrease blade vibration amplitudes. The friction forces generated by the relative displacements between the underplatform damper and the blade platforms provide a significant amount of energy dissipation. In practice, a number of different underplatform damper designs are applied. Basically, these are wedge dampers with flat contact areas, cylindrical dampers with curved surfaces or asymmetrical dampers with both flat contact surfaces on one side and curved contact surfaces on the other. The latter damper type combines the advantages of both the wedge and the cylindrical damper by preventing the damper from pure rolling on the one hand as it has been observed for cylindrical dampers and on the other hand, avoiding a diverged plane area contact in case of a wedge damper, causing a damper lift-off. This paper will focus on the investigation of cylindrical and asymmetrical underplatform dampers. A comparison between measurements of rotating assemblies in Siemens PG gas turbines (V84.2, V64.3A and V94.3A(2)) under test and real operat ing conditions with cylindrical and asymmetrical underplatform dampers and the predictions of the developed theoretical model are presented. Special attention is paid to the frequency shift due to the application of an underplatform damper, since in particular for stationary gas turbines, in addition to the amplitude reduction, the accurate prediction of the resonance frequency is of major interest.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Allgemeiner Maschinenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2008. 269-280 Beitrag in 2004 ASME Turbo Expo, Vienna, Österreich.
Publikation: Konferenzbeitrag › Paper › Forschung › Peer-Review
}
TY - CONF
T1 - Asymmetrical underplatform dampers in gas turbine bladings
T2 - 2004 ASME Turbo Expo
AU - Panning, Lars
AU - Popp, Karl
AU - Sextro, Walter
AU - Götting, Florian
AU - Kayser, Andreas
AU - Wolter, Ivo
PY - 2008/11/24
Y1 - 2008/11/24
N2 - During operation, the rotating blades of a gas turbine are subjected to centrifugal forces as well as fluctuating gas forces, resulting in blade vibrations. In addition to material damping, aerodynamical and blade root damping, underplatform dampers are widely used to increase the amount of damping and to decrease blade vibration amplitudes. The friction forces generated by the relative displacements between the underplatform damper and the blade platforms provide a significant amount of energy dissipation. In practice, a number of different underplatform damper designs are applied. Basically, these are wedge dampers with flat contact areas, cylindrical dampers with curved surfaces or asymmetrical dampers with both flat contact surfaces on one side and curved contact surfaces on the other. The latter damper type combines the advantages of both the wedge and the cylindrical damper by preventing the damper from pure rolling on the one hand as it has been observed for cylindrical dampers and on the other hand, avoiding a diverged plane area contact in case of a wedge damper, causing a damper lift-off. This paper will focus on the investigation of cylindrical and asymmetrical underplatform dampers. A comparison between measurements of rotating assemblies in Siemens PG gas turbines (V84.2, V64.3A and V94.3A(2)) under test and real operat ing conditions with cylindrical and asymmetrical underplatform dampers and the predictions of the developed theoretical model are presented. Special attention is paid to the frequency shift due to the application of an underplatform damper, since in particular for stationary gas turbines, in addition to the amplitude reduction, the accurate prediction of the resonance frequency is of major interest.
AB - During operation, the rotating blades of a gas turbine are subjected to centrifugal forces as well as fluctuating gas forces, resulting in blade vibrations. In addition to material damping, aerodynamical and blade root damping, underplatform dampers are widely used to increase the amount of damping and to decrease blade vibration amplitudes. The friction forces generated by the relative displacements between the underplatform damper and the blade platforms provide a significant amount of energy dissipation. In practice, a number of different underplatform damper designs are applied. Basically, these are wedge dampers with flat contact areas, cylindrical dampers with curved surfaces or asymmetrical dampers with both flat contact surfaces on one side and curved contact surfaces on the other. The latter damper type combines the advantages of both the wedge and the cylindrical damper by preventing the damper from pure rolling on the one hand as it has been observed for cylindrical dampers and on the other hand, avoiding a diverged plane area contact in case of a wedge damper, causing a damper lift-off. This paper will focus on the investigation of cylindrical and asymmetrical underplatform dampers. A comparison between measurements of rotating assemblies in Siemens PG gas turbines (V84.2, V64.3A and V94.3A(2)) under test and real operat ing conditions with cylindrical and asymmetrical underplatform dampers and the predictions of the developed theoretical model are presented. Special attention is paid to the frequency shift due to the application of an underplatform damper, since in particular for stationary gas turbines, in addition to the amplitude reduction, the accurate prediction of the resonance frequency is of major interest.
UR - http://www.scopus.com/inward/record.url?scp=10244270729&partnerID=8YFLogxK
U2 - 10.1115/gt2004-53316
DO - 10.1115/gt2004-53316
M3 - Paper
AN - SCOPUS:10244270729
SP - 269
EP - 280
Y2 - 14 June 2004 through 17 June 2004
ER -