Arithmetic of singular Enriques surfaces

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)195-230
Seitenumfang36
FachzeitschriftAlgebra and Number Theory
Jahrgang6
Ausgabenummer2
PublikationsstatusVeröffentlicht - 24 Juni 2012

Abstract

We study the arithmetic of Enriques surfaces whose universal covers are singular K3 surfaces. If a singular K3 surface X has discriminant d, then it has a model over the ring class field d. Our main theorem is that the same holds true for any Enriques quotient of X. It is based on a study on Neron-Severi groups of singular K3 surfaces. We also comment on Galois actions on divisors of Enriques surfaces.

ASJC Scopus Sachgebiete

Zitieren

Arithmetic of singular Enriques surfaces. / Hulek, Klaus; Schütt, Matthias.
in: Algebra and Number Theory, Jahrgang 6, Nr. 2, 24.06.2012, S. 195-230.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Hulek K, Schütt M. Arithmetic of singular Enriques surfaces. Algebra and Number Theory. 2012 Jun 24;6(2):195-230. doi: 10.2140/ant.2012.6.195
Hulek, Klaus ; Schütt, Matthias. / Arithmetic of singular Enriques surfaces. in: Algebra and Number Theory. 2012 ; Jahrgang 6, Nr. 2. S. 195-230.
Download
@article{39a9a257f1c24d48a270532420a7631e,
title = "Arithmetic of singular Enriques surfaces",
abstract = "We study the arithmetic of Enriques surfaces whose universal covers are singular K3 surfaces. If a singular K3 surface X has discriminant d, then it has a model over the ring class field d. Our main theorem is that the same holds true for any Enriques quotient of X. It is based on a study on Neron-Severi groups of singular K3 surfaces. We also comment on Galois actions on divisors of Enriques surfaces. ",
keywords = "Complex multiplication, Elliptic fibration, Enriques surface, Mordell-weil group, N{\'e}ron-severi group, Singular K3 surface",
author = "Klaus Hulek and Matthias Sch{\"u}tt",
year = "2012",
month = jun,
day = "24",
doi = "10.2140/ant.2012.6.195",
language = "English",
volume = "6",
pages = "195--230",
journal = "Algebra and Number Theory",
issn = "1937-0652",
publisher = "Mathematical Sciences Publishers",
number = "2",

}

Download

TY - JOUR

T1 - Arithmetic of singular Enriques surfaces

AU - Hulek, Klaus

AU - Schütt, Matthias

PY - 2012/6/24

Y1 - 2012/6/24

N2 - We study the arithmetic of Enriques surfaces whose universal covers are singular K3 surfaces. If a singular K3 surface X has discriminant d, then it has a model over the ring class field d. Our main theorem is that the same holds true for any Enriques quotient of X. It is based on a study on Neron-Severi groups of singular K3 surfaces. We also comment on Galois actions on divisors of Enriques surfaces.

AB - We study the arithmetic of Enriques surfaces whose universal covers are singular K3 surfaces. If a singular K3 surface X has discriminant d, then it has a model over the ring class field d. Our main theorem is that the same holds true for any Enriques quotient of X. It is based on a study on Neron-Severi groups of singular K3 surfaces. We also comment on Galois actions on divisors of Enriques surfaces.

KW - Complex multiplication

KW - Elliptic fibration

KW - Enriques surface

KW - Mordell-weil group

KW - Néron-severi group

KW - Singular K3 surface

UR - http://www.scopus.com/inward/record.url?scp=84863477533&partnerID=8YFLogxK

U2 - 10.2140/ant.2012.6.195

DO - 10.2140/ant.2012.6.195

M3 - Article

AN - SCOPUS:84863477533

VL - 6

SP - 195

EP - 230

JO - Algebra and Number Theory

JF - Algebra and Number Theory

SN - 1937-0652

IS - 2

ER -

Von denselben Autoren