Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 195-230 |
Seitenumfang | 36 |
Fachzeitschrift | Algebra and Number Theory |
Jahrgang | 6 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 24 Juni 2012 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Algebra und Zahlentheorie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Algebra and Number Theory, Jahrgang 6, Nr. 2, 24.06.2012, S. 195-230.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Arithmetic of singular Enriques surfaces
AU - Hulek, Klaus
AU - Schütt, Matthias
PY - 2012/6/24
Y1 - 2012/6/24
N2 - We study the arithmetic of Enriques surfaces whose universal covers are singular K3 surfaces. If a singular K3 surface X has discriminant d, then it has a model over the ring class field d. Our main theorem is that the same holds true for any Enriques quotient of X. It is based on a study on Neron-Severi groups of singular K3 surfaces. We also comment on Galois actions on divisors of Enriques surfaces.
AB - We study the arithmetic of Enriques surfaces whose universal covers are singular K3 surfaces. If a singular K3 surface X has discriminant d, then it has a model over the ring class field d. Our main theorem is that the same holds true for any Enriques quotient of X. It is based on a study on Neron-Severi groups of singular K3 surfaces. We also comment on Galois actions on divisors of Enriques surfaces.
KW - Complex multiplication
KW - Elliptic fibration
KW - Enriques surface
KW - Mordell-weil group
KW - Néron-severi group
KW - Singular K3 surface
UR - http://www.scopus.com/inward/record.url?scp=84863477533&partnerID=8YFLogxK
U2 - 10.2140/ant.2012.6.195
DO - 10.2140/ant.2012.6.195
M3 - Article
AN - SCOPUS:84863477533
VL - 6
SP - 195
EP - 230
JO - Algebra and Number Theory
JF - Algebra and Number Theory
SN - 1937-0652
IS - 2
ER -