Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 513-527 |
Seitenumfang | 15 |
Fachzeitschrift | Michigan mathematical journal |
Jahrgang | 56 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Dez. 2008 |
Extern publiziert | Ja |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Michigan mathematical journal, Jahrgang 56, Nr. 3, 12.2008, S. 513-527.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Arithmetic of a singular K3 surface
AU - Schütt, Matthias
PY - 2008/12
Y1 - 2008/12
N2 - This paper is concerned with the arithmetic of the elliptic K3 surface with configuration [1,1,1,12,3*]. We determine the newforms and zeta-functions associated to X and its twists. We verify conjectures of Tate and Shioda for the reductions of X at 2 and 3.
AB - This paper is concerned with the arithmetic of the elliptic K3 surface with configuration [1,1,1,12,3*]. We determine the newforms and zeta-functions associated to X and its twists. We verify conjectures of Tate and Shioda for the reductions of X at 2 and 3.
KW - singular K3 surface
UR - http://www.scopus.com/inward/record.url?scp=59949104392&partnerID=8YFLogxK
UR - https://arxiv.org/abs/math/0605560
U2 - 10.1307/mmj/1231770357
DO - 10.1307/mmj/1231770357
M3 - Article
AN - SCOPUS:59949104392
VL - 56
SP - 513
EP - 527
JO - Michigan mathematical journal
JF - Michigan mathematical journal
SN - 0026-2285
IS - 3
ER -