Details
Originalsprache | Englisch |
---|---|
Publikationsstatus | Elektronisch veröffentlicht (E-Pub) - 29 Feb. 2024 |
Abstract
For instance, we show that if X contains an (r+1)-plane over a field k, then Fr(X) is rational over k. When X has odd dimension, we show a partial converse for rationality of the Fano schemes of second maximal linear spaces, generalizing results of Hassett--Tschinkel and Benoist--Wittenberg. When X has even dimension, the analogous result does not hold, and we further investigate this situation over the real numbers. In particular, we prove a rationality criterion for the Fano schemes of second maximal linear spaces on these even-dimensional complete intersections over R; this may be viewed as extending work of Hassett--Kollár--Tschinkel.
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2024.
Publikation: Arbeitspapier/Preprint › Preprint
}
TY - UNPB
T1 - Arithmetic and birational properties of linear spaces on intersections of two quadrics
AU - Ji, Lena
AU - Suzuki, Fumiaki
N1 - 26 pages, comments are welcome
PY - 2024/2/29
Y1 - 2024/2/29
N2 - We study rationality questions for Fano schemes of linear spaces on smooth complete intersections of two quadrics, especially over non-closed fields. Our approach is to study hyperbolic reductions of the pencil of quadrics associated to $X$. We prove that the Fano schemes $F_r(X)$ of $r$-planes are birational to symmetric powers of hyperbolic reductions, generalizing results of Reid and Colliot-Th\'el\`ene--Sansuc--Swinnerton-Dyer, and we give several applications to rationality properties of $F_r(X)$. For instance, we show that if $X$ contains an $(r+1)$-plane over a field $k$, then $F_r(X)$ is rational over $k$. When $X$ has odd dimension, we show a partial converse for rationality of the Fano schemes of second maximal linear spaces, generalizing results of Hassett--Tschinkel and Benoist--Wittenberg. When $X$ has even dimension, the analogous result does not hold, and we further investigate this situation over the real numbers. In particular, we prove a rationality criterion for the Fano schemes of second maximal linear spaces on these even-dimensional complete intersections over $\mathbb R$; this may be viewed as extending work of Hassett--Koll\'ar--Tschinkel.
AB - We study rationality questions for Fano schemes of linear spaces on smooth complete intersections of two quadrics, especially over non-closed fields. Our approach is to study hyperbolic reductions of the pencil of quadrics associated to $X$. We prove that the Fano schemes $F_r(X)$ of $r$-planes are birational to symmetric powers of hyperbolic reductions, generalizing results of Reid and Colliot-Th\'el\`ene--Sansuc--Swinnerton-Dyer, and we give several applications to rationality properties of $F_r(X)$. For instance, we show that if $X$ contains an $(r+1)$-plane over a field $k$, then $F_r(X)$ is rational over $k$. When $X$ has odd dimension, we show a partial converse for rationality of the Fano schemes of second maximal linear spaces, generalizing results of Hassett--Tschinkel and Benoist--Wittenberg. When $X$ has even dimension, the analogous result does not hold, and we further investigate this situation over the real numbers. In particular, we prove a rationality criterion for the Fano schemes of second maximal linear spaces on these even-dimensional complete intersections over $\mathbb R$; this may be viewed as extending work of Hassett--Koll\'ar--Tschinkel.
KW - math.AG
KW - Primary: 14E08, Secondary: 14G20, 14C25, 14D10
M3 - Preprint
BT - Arithmetic and birational properties of linear spaces on intersections of two quadrics
ER -