Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 86-93 |
Seitenumfang | 8 |
Fachzeitschrift | Energy Procedia |
Jahrgang | 38 |
Frühes Online-Datum | 5 Sept. 2013 |
Publikationsstatus | Veröffentlicht - 2013 |
Veranstaltung | 3rd International Conference on Crystalline Silicon Photovoltaics, SiliconPV 2013 - Hamelin, Deutschland Dauer: 25 März 2013 → 27 März 2013 |
Abstract
While ray tracing of solar cells was established decades ago, ray tracing of entire modules has met obstacles, mainly because module optics are affected by geometric structures varying over a large scale of dimensions. In this paper, we introduce a ray tracing framework that is based on a modular structure made up of separate plugins. While existing plugins can be used for common effects such as light sources, absorption in materials, etc., specialized plug-ins can be written by users to handle problem-specific properties. We demonstrate the functionality of our approach by ray tracing a test module containing 9 crystalline Si solar cells. Good agreement between light-beam induced current (LBIC) measurements and ray tracing is achieved.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Energy Procedia, Jahrgang 38, 2013, S. 86-93.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Application of a New Ray Tracing Framework to the Analysis of Extended Regions in Si Solar Cell Modules
AU - Winter, Matthias
AU - Vogt, Malte R.
AU - Bothe, Karsten
AU - Köntges, Marc
AU - Brendel, Rolf
AU - Altermatt, Pietro P.
AU - Holst, Hendrik
PY - 2013
Y1 - 2013
N2 - While ray tracing of solar cells was established decades ago, ray tracing of entire modules has met obstacles, mainly because module optics are affected by geometric structures varying over a large scale of dimensions. In this paper, we introduce a ray tracing framework that is based on a modular structure made up of separate plugins. While existing plugins can be used for common effects such as light sources, absorption in materials, etc., specialized plug-ins can be written by users to handle problem-specific properties. We demonstrate the functionality of our approach by ray tracing a test module containing 9 crystalline Si solar cells. Good agreement between light-beam induced current (LBIC) measurements and ray tracing is achieved.
AB - While ray tracing of solar cells was established decades ago, ray tracing of entire modules has met obstacles, mainly because module optics are affected by geometric structures varying over a large scale of dimensions. In this paper, we introduce a ray tracing framework that is based on a modular structure made up of separate plugins. While existing plugins can be used for common effects such as light sources, absorption in materials, etc., specialized plug-ins can be written by users to handle problem-specific properties. We demonstrate the functionality of our approach by ray tracing a test module containing 9 crystalline Si solar cells. Good agreement between light-beam induced current (LBIC) measurements and ray tracing is achieved.
KW - LBIC
KW - Module
KW - Ray tracing
UR - http://www.scopus.com/inward/record.url?scp=84898751769&partnerID=8YFLogxK
U2 - 10.1016/j.egypro.2013.07.253
DO - 10.1016/j.egypro.2013.07.253
M3 - Conference article
AN - SCOPUS:84898751769
VL - 38
SP - 86
EP - 93
JO - Energy Procedia
JF - Energy Procedia
SN - 1876-6102
T2 - 3rd International Conference on Crystalline Silicon Photovoltaics, SiliconPV 2013
Y2 - 25 March 2013 through 27 March 2013
ER -