Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 573-580 |
Seitenumfang | 8 |
Fachzeitschrift | Archiv der Mathematik |
Jahrgang | 110 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - 1 Juni 2018 |
Extern publiziert | Ja |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Archiv der Mathematik, Jahrgang 110, Nr. 6, 01.06.2018, S. 573-580.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Another proof of Grothendieck’s theorem on the splitting of vector bundles on the projective line
AU - Schoemann, Claudia
AU - Wiedmann, Stefan
PY - 2018/6/1
Y1 - 2018/6/1
N2 - This note contains another proof of Grothendieck‘s theorem on the splitting of vector bundles on the projective line over a field k. Actually the proof is formulated entirely in the classical terms of a lattice Λ ≅ k[ T] d, discretely embedded into the vector space V≅K∞d, where K∞≅ k((1 / T)) is the completion of the field of rational functions k(T) at the place ∞ with the usual valuation.
AB - This note contains another proof of Grothendieck‘s theorem on the splitting of vector bundles on the projective line over a field k. Actually the proof is formulated entirely in the classical terms of a lattice Λ ≅ k[ T] d, discretely embedded into the vector space V≅K∞d, where K∞≅ k((1 / T)) is the completion of the field of rational functions k(T) at the place ∞ with the usual valuation.
UR - http://www.scopus.com/inward/record.url?scp=85041501371&partnerID=8YFLogxK
U2 - 10.1007/s00013-018-1158-0
DO - 10.1007/s00013-018-1158-0
M3 - Article
AN - SCOPUS:85041501371
VL - 110
SP - 573
EP - 580
JO - Archiv der Mathematik
JF - Archiv der Mathematik
SN - 0003-889X
IS - 6
ER -