Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 1873 |
Fachzeitschrift | Nature Communications |
Jahrgang | 16 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 22 Feb. 2025 |
Abstract
Unusually high δ15N values in the Neoarchean sedimentary record in the time period from 2.8 to 2.6 Ga, termed the Nitrogen Isotope Event (NIE), might be explained by aerobic N cycling prior to the Great Oxidation Event (GOE). Here we report strongly positive δ15N values up to +42.5 ‰ in ~2.75 – 2.73 Ga shallow-marine carbonates from Zimbabwe. As the corresponding deeper-marine shales exhibit negative δ15N values that are explained by partial biological uptake from a large ammonium reservoir, we interpret our data to have resulted from hydrothermal upwelling of 15N-rich ammonium into shallow, partially oxic waters, consistent with uranium isotope variations. This work shows that anomalous N isotope signatures at the onset of the NIE temporally correlate with extensive volcanic and hydrothermal activity both locally and globally, which may have stimulated primary production and spurred biological innovation in the lead-up to the GOE.
ASJC Scopus Sachgebiete
- Chemie (insg.)
- Allgemeine Chemie
- Biochemie, Genetik und Molekularbiologie (insg.)
- Allgemeine Biochemie, Genetik und Molekularbiologie
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Nature Communications, Jahrgang 16, Nr. 1, 1873, 22.02.2025.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Anomalous δ15N values in the Neoarchean associated with an abundant supply of hydrothermal ammonium
AU - Martin, Ashley N.
AU - Stüeken, Eva E.
AU - Gehringer, Michelle M.
AU - Markowska, Monika
AU - Vonhof, Hubert
AU - Weyer, Stefan
AU - Hofmann, Axel
N1 - Publisher Copyright: © The Author(s) 2025.
PY - 2025/2/22
Y1 - 2025/2/22
N2 - Unusually high δ15N values in the Neoarchean sedimentary record in the time period from 2.8 to 2.6 Ga, termed the Nitrogen Isotope Event (NIE), might be explained by aerobic N cycling prior to the Great Oxidation Event (GOE). Here we report strongly positive δ15N values up to +42.5 ‰ in ~2.75 – 2.73 Ga shallow-marine carbonates from Zimbabwe. As the corresponding deeper-marine shales exhibit negative δ15N values that are explained by partial biological uptake from a large ammonium reservoir, we interpret our data to have resulted from hydrothermal upwelling of 15N-rich ammonium into shallow, partially oxic waters, consistent with uranium isotope variations. This work shows that anomalous N isotope signatures at the onset of the NIE temporally correlate with extensive volcanic and hydrothermal activity both locally and globally, which may have stimulated primary production and spurred biological innovation in the lead-up to the GOE.
AB - Unusually high δ15N values in the Neoarchean sedimentary record in the time period from 2.8 to 2.6 Ga, termed the Nitrogen Isotope Event (NIE), might be explained by aerobic N cycling prior to the Great Oxidation Event (GOE). Here we report strongly positive δ15N values up to +42.5 ‰ in ~2.75 – 2.73 Ga shallow-marine carbonates from Zimbabwe. As the corresponding deeper-marine shales exhibit negative δ15N values that are explained by partial biological uptake from a large ammonium reservoir, we interpret our data to have resulted from hydrothermal upwelling of 15N-rich ammonium into shallow, partially oxic waters, consistent with uranium isotope variations. This work shows that anomalous N isotope signatures at the onset of the NIE temporally correlate with extensive volcanic and hydrothermal activity both locally and globally, which may have stimulated primary production and spurred biological innovation in the lead-up to the GOE.
UR - http://www.scopus.com/inward/record.url?scp=85218504824&partnerID=8YFLogxK
U2 - 10.1038/s41467-025-57091-3
DO - 10.1038/s41467-025-57091-3
M3 - Article
C2 - 39984454
AN - SCOPUS:85218504824
VL - 16
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
IS - 1
M1 - 1873
ER -