Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 273-278 |
Seitenumfang | 6 |
Fachzeitschrift | Physica E: Low-Dimensional Systems and Nanostructures |
Jahrgang | 103 |
Frühes Online-Datum | 15 Juni 2018 |
Publikationsstatus | Veröffentlicht - Sept. 2018 |
Extern publiziert | Ja |
Abstract
Group IV–V-type two-dimensional (2D) materials, such as GeP, GeAs, SiP and SiAs with anisotropic atomic structures, have recently attracted remarkable attention due to their outstanding physics. In this investigation, we conducted density functional theory simulations to explore the mechanical responses of these novel 2D systems. In particular, we explored the possibility of band-gap engineering in these 2D structures through different mechanical loading conditions. First-principles results of uniaxial tensile simulations confirm anisotropic mechanical responses of these novel 2D structures, with considerably higher elastic modulus, tensile strength and stretchability along the zigzag direction as compared with the armchair direction. Notably, the stretchability of considered monolayers along the zigzag direction was found to be slightly higher than that of the single-layer graphene and h-BN. The electronic band-gaps of energy minimized single-layer SiP, SiAs, GeP and GeAs were estimated by HSE06 method to be 2.58 eV, 2.3 eV, 2.24 eV and 1.98 eV, respectively. Our results highlight the strain tuneable band-gap character in single-layer SiP, SiAs, GeP and GeAs and suggest that various mechanical loading conditions can be employed to finely narrow the electronic band-gaps in these structures.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physica E: Low-Dimensional Systems and Nanostructures, Jahrgang 103, 09.2018, S. 273-278.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Anisotropic mechanical properties and strain tuneable band-gap in single-layer SiP, SiAs, GeP and GeAs
AU - Mortazavi, Bohayra
AU - Rabczuk, Timon
N1 - Funding information: Authors greatly acknowledge the financial support by European Research Council for COMBAT project (Grant number 615132 ).
PY - 2018/9
Y1 - 2018/9
N2 - Group IV–V-type two-dimensional (2D) materials, such as GeP, GeAs, SiP and SiAs with anisotropic atomic structures, have recently attracted remarkable attention due to their outstanding physics. In this investigation, we conducted density functional theory simulations to explore the mechanical responses of these novel 2D systems. In particular, we explored the possibility of band-gap engineering in these 2D structures through different mechanical loading conditions. First-principles results of uniaxial tensile simulations confirm anisotropic mechanical responses of these novel 2D structures, with considerably higher elastic modulus, tensile strength and stretchability along the zigzag direction as compared with the armchair direction. Notably, the stretchability of considered monolayers along the zigzag direction was found to be slightly higher than that of the single-layer graphene and h-BN. The electronic band-gaps of energy minimized single-layer SiP, SiAs, GeP and GeAs were estimated by HSE06 method to be 2.58 eV, 2.3 eV, 2.24 eV and 1.98 eV, respectively. Our results highlight the strain tuneable band-gap character in single-layer SiP, SiAs, GeP and GeAs and suggest that various mechanical loading conditions can be employed to finely narrow the electronic band-gaps in these structures.
AB - Group IV–V-type two-dimensional (2D) materials, such as GeP, GeAs, SiP and SiAs with anisotropic atomic structures, have recently attracted remarkable attention due to their outstanding physics. In this investigation, we conducted density functional theory simulations to explore the mechanical responses of these novel 2D systems. In particular, we explored the possibility of band-gap engineering in these 2D structures through different mechanical loading conditions. First-principles results of uniaxial tensile simulations confirm anisotropic mechanical responses of these novel 2D structures, with considerably higher elastic modulus, tensile strength and stretchability along the zigzag direction as compared with the armchair direction. Notably, the stretchability of considered monolayers along the zigzag direction was found to be slightly higher than that of the single-layer graphene and h-BN. The electronic band-gaps of energy minimized single-layer SiP, SiAs, GeP and GeAs were estimated by HSE06 method to be 2.58 eV, 2.3 eV, 2.24 eV and 1.98 eV, respectively. Our results highlight the strain tuneable band-gap character in single-layer SiP, SiAs, GeP and GeAs and suggest that various mechanical loading conditions can be employed to finely narrow the electronic band-gaps in these structures.
KW - 2D materials
KW - Band-gap
KW - First-principles
KW - Mechanical
KW - Simulations
UR - http://www.scopus.com/inward/record.url?scp=85048800204&partnerID=8YFLogxK
U2 - 10.1016/j.physe.2018.06.011
DO - 10.1016/j.physe.2018.06.011
M3 - Article
AN - SCOPUS:85048800204
VL - 103
SP - 273
EP - 278
JO - Physica E: Low-Dimensional Systems and Nanostructures
JF - Physica E: Low-Dimensional Systems and Nanostructures
SN - 1386-9477
ER -