Analytic solutions for a Stefan problem with Gibbs-Thomson correction

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Organisationseinheiten

Externe Organisationen

  • Martin-Luther-Universität Halle-Wittenberg
  • Vanderbilt University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1-52
Seitenumfang52
FachzeitschriftJournal für die reine und angewandte Mathematik
Ausgabenummer563
PublikationsstatusVeröffentlicht - 1 Jan. 2003

Abstract

We provide existence of a unique smooth solution for a class of one- and two-phase Stefan problems with Gibbs-Thomson correction in arbitrary space dimensions. In addition, it is shown that the moving interface depends analytically on the temporal and spatial variables. Of crucial importance for the analysis is the property of maximal Lpregularity for the linearized problem, which is fully developed in this paper as well.

ASJC Scopus Sachgebiete

Zitieren

Analytic solutions for a Stefan problem with Gibbs-Thomson correction. / Escher, Joachim; Prüss, Jan; Simonett, Gieri.
in: Journal für die reine und angewandte Mathematik, Nr. 563, 01.01.2003, S. 1-52.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Escher J, Prüss J, Simonett G. Analytic solutions for a Stefan problem with Gibbs-Thomson correction. Journal für die reine und angewandte Mathematik. 2003 Jan 1;(563):1-52. doi: 10.1515/crll.2003.082, 10.15488/206
Download
@article{be2540bef3244059a87f2137105168b2,
title = "Analytic solutions for a Stefan problem with Gibbs-Thomson correction",
abstract = "We provide existence of a unique smooth solution for a class of one- and two-phase Stefan problems with Gibbs-Thomson correction in arbitrary space dimensions. In addition, it is shown that the moving interface depends analytically on the temporal and spatial variables. Of crucial importance for the analysis is the property of maximal Lpregularity for the linearized problem, which is fully developed in this paper as well.",
author = "Joachim Escher and Jan Pr{\"u}ss and Gieri Simonett",
year = "2003",
month = jan,
day = "1",
doi = "10.1515/crll.2003.082",
language = "English",
pages = "1--52",
journal = "Journal f{\"u}r die reine und angewandte Mathematik",
issn = "0075-4102",
publisher = "Walter de Gruyter GmbH",
number = "563",

}

Download

TY - JOUR

T1 - Analytic solutions for a Stefan problem with Gibbs-Thomson correction

AU - Escher, Joachim

AU - Prüss, Jan

AU - Simonett, Gieri

PY - 2003/1/1

Y1 - 2003/1/1

N2 - We provide existence of a unique smooth solution for a class of one- and two-phase Stefan problems with Gibbs-Thomson correction in arbitrary space dimensions. In addition, it is shown that the moving interface depends analytically on the temporal and spatial variables. Of crucial importance for the analysis is the property of maximal Lpregularity for the linearized problem, which is fully developed in this paper as well.

AB - We provide existence of a unique smooth solution for a class of one- and two-phase Stefan problems with Gibbs-Thomson correction in arbitrary space dimensions. In addition, it is shown that the moving interface depends analytically on the temporal and spatial variables. Of crucial importance for the analysis is the property of maximal Lpregularity for the linearized problem, which is fully developed in this paper as well.

UR - http://www.scopus.com/inward/record.url?scp=0242338686&partnerID=8YFLogxK

U2 - 10.1515/crll.2003.082

DO - 10.1515/crll.2003.082

M3 - Article

AN - SCOPUS:0242338686

SP - 1

EP - 52

JO - Journal für die reine und angewandte Mathematik

JF - Journal für die reine und angewandte Mathematik

SN - 0075-4102

IS - 563

ER -

Von denselben Autoren