Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Lecture Notes in Production Engineering |
Herausgeber (Verlag) | Springer Nature |
Seiten | 378-411 |
Seitenumfang | 34 |
ISBN (elektronisch) | 978-3-030-61902-2 |
ISBN (Print) | 978-3-030-61901-5 |
Publikationsstatus | Veröffentlicht - 2021 |
Publikationsreihe
Name | Lecture Notes in Production Engineering |
---|---|
Band | Part F1168 |
ISSN (Print) | 2194-0525 |
ISSN (elektronisch) | 2194-0533 |
Abstract
Sheet-bulk forming processes are applied to manufacture complex components with intricate shape elements or with large variations in wall thickness from sheet metals. Accumulated plastic strains achieved in sheet-bulk metal forming are substantially larger than in conventional sheet metal forming. Differing from sheet forming, the stress state is three-dimensional for these processes due to the thick sheets and process kinematics. Due to these specific process conditions, conventional methods to predict failure in sheet forming such as forming limit curves are not sufficient. Thus, process analysis as well as characterisation of microstructural and mechanical properties for a prediction of properties affecting failure of formed components require other methods. Application of constitutive models for damage computation allows predicting the onset of failure during forming operations. Moreover, even before failure, the mechanical properties, i.e. the elastic stiffness of components, are affected by the evolution of voids. Previous research did not focus on the comparison of different model strategies with respect to the accuracy of predictions and the necessary strategy for parameter identification and validation. This contribution demonstrates that a Gurson-type model, which relied on high-resolution microstructural data, provided the best prediction of failure for a local indentation and sheet upsetting. Suited preparation methods were developed to analyse small voids in the nanometre range. A novel fracture criterion is shown to offer the best compromise of identification effort, implementation effort and accuracy. The assessment of the effect of void evolution on component properties is an important aspect. Different non-destructive methods were validated based on measurements of resonance frequency and propagation velocity. A quantitative relation between the measured void area fraction and the elastic properties was established for components relevant for sheet-bulk metal forming. A testing procedure to determine the performance of components under elevated strain rates was evaluated and the prediction capacity of different modelling approaches with respect to the strain rate sensitivity was compared.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Wirtschaftsingenieurwesen und Fertigungstechnik
- Volkswirtschaftslehre, Ökonometrie und Finanzen (insg.)
- Volkswirtschaftslehre, Ökonometrie und Finanzen (sonstige)
- Ingenieurwesen (insg.)
- Sicherheit, Risiko, Zuverlässigkeit und Qualität
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Lecture Notes in Production Engineering. Springer Nature, 2021. S. 378-411 (Lecture Notes in Production Engineering; Band Part F1168).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Beitrag in Buch/Sammelwerk › Forschung › Peer-Review
}
TY - CHAP
T1 - Analysis of Path-Dependent Damage and Microstructure Evolution for Numerical Analysis of Sheet-Bulk Metal Forming Processes
AU - Gutknecht, Florian
AU - Gerstein, Gregory
AU - Isik, Kerim
AU - Tekkaya, A. Erman
AU - Maier, Hans Jürgen
AU - Clausmeyer, Till
AU - Nürnberger, Florian
N1 - Funding Information: Acknowledgment. This study was supported by the German Research Foundation (DFG) within the scope of the Transregional Collaborative Research Centre for sheet-bulk metal forming (TCRC 73, Subproject C4) under grant number 68237143 and 116969364, respectively. GG, FN and HJM highly acknowledge DFG funding (Grant No. 316923185) for the Xradia 520 Versa used in this study.
PY - 2021
Y1 - 2021
N2 - Sheet-bulk forming processes are applied to manufacture complex components with intricate shape elements or with large variations in wall thickness from sheet metals. Accumulated plastic strains achieved in sheet-bulk metal forming are substantially larger than in conventional sheet metal forming. Differing from sheet forming, the stress state is three-dimensional for these processes due to the thick sheets and process kinematics. Due to these specific process conditions, conventional methods to predict failure in sheet forming such as forming limit curves are not sufficient. Thus, process analysis as well as characterisation of microstructural and mechanical properties for a prediction of properties affecting failure of formed components require other methods. Application of constitutive models for damage computation allows predicting the onset of failure during forming operations. Moreover, even before failure, the mechanical properties, i.e. the elastic stiffness of components, are affected by the evolution of voids. Previous research did not focus on the comparison of different model strategies with respect to the accuracy of predictions and the necessary strategy for parameter identification and validation. This contribution demonstrates that a Gurson-type model, which relied on high-resolution microstructural data, provided the best prediction of failure for a local indentation and sheet upsetting. Suited preparation methods were developed to analyse small voids in the nanometre range. A novel fracture criterion is shown to offer the best compromise of identification effort, implementation effort and accuracy. The assessment of the effect of void evolution on component properties is an important aspect. Different non-destructive methods were validated based on measurements of resonance frequency and propagation velocity. A quantitative relation between the measured void area fraction and the elastic properties was established for components relevant for sheet-bulk metal forming. A testing procedure to determine the performance of components under elevated strain rates was evaluated and the prediction capacity of different modelling approaches with respect to the strain rate sensitivity was compared.
AB - Sheet-bulk forming processes are applied to manufacture complex components with intricate shape elements or with large variations in wall thickness from sheet metals. Accumulated plastic strains achieved in sheet-bulk metal forming are substantially larger than in conventional sheet metal forming. Differing from sheet forming, the stress state is three-dimensional for these processes due to the thick sheets and process kinematics. Due to these specific process conditions, conventional methods to predict failure in sheet forming such as forming limit curves are not sufficient. Thus, process analysis as well as characterisation of microstructural and mechanical properties for a prediction of properties affecting failure of formed components require other methods. Application of constitutive models for damage computation allows predicting the onset of failure during forming operations. Moreover, even before failure, the mechanical properties, i.e. the elastic stiffness of components, are affected by the evolution of voids. Previous research did not focus on the comparison of different model strategies with respect to the accuracy of predictions and the necessary strategy for parameter identification and validation. This contribution demonstrates that a Gurson-type model, which relied on high-resolution microstructural data, provided the best prediction of failure for a local indentation and sheet upsetting. Suited preparation methods were developed to analyse small voids in the nanometre range. A novel fracture criterion is shown to offer the best compromise of identification effort, implementation effort and accuracy. The assessment of the effect of void evolution on component properties is an important aspect. Different non-destructive methods were validated based on measurements of resonance frequency and propagation velocity. A quantitative relation between the measured void area fraction and the elastic properties was established for components relevant for sheet-bulk metal forming. A testing procedure to determine the performance of components under elevated strain rates was evaluated and the prediction capacity of different modelling approaches with respect to the strain rate sensitivity was compared.
UR - http://www.scopus.com/inward/record.url?scp=85166658400&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-61902-2_17
DO - 10.1007/978-3-030-61902-2_17
M3 - Contribution to book/anthology
AN - SCOPUS:85166658400
SN - 978-3-030-61901-5
T3 - Lecture Notes in Production Engineering
SP - 378
EP - 411
BT - Lecture Notes in Production Engineering
PB - Springer Nature
ER -