Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 115-119 |
Seitenumfang | 5 |
Fachzeitschrift | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Jahrgang | 42 |
Ausgabenummer | 3W4 |
Publikationsstatus | Veröffentlicht - 6 März 2018 |
Veranstaltung | 2018 Geoinformation for Disaster Management Conference, Gi4DM 2018 - Istanbul, Türkei Dauer: 18 März 2018 → 21 März 2018 |
Abstract
Height models are basic information required for disaster Management. Not in any case satisfying and actual height models are available, but they can be generated by satellite stereo pairs being more precise as InSAR. The Korean Kompsat-3 has a ground sampling distance of 0.71m. A stereo combination covering the main part of Istanbul has been used for the generation of height models. Kompsat-3 images are available as L1R images, corresponding close to the original image geometry, and as L1G, being projected to the SRTM 3 arcsec height model. For use of Semi Global Matching quasi epipolar images are required. They can be produced by just rotating the L1G-images to the stereo base, while with L1R-images requires at first a projection to a constant height level. The projection of L1G to the SRTM height models leads to height differences against the SRTM heights. The orientation of the L1R images with 71 ground control points (GCP) was possible in X and Y with 0.6 GSD and in Z with 1.1 GSD, while with L1G images only 1.2 GSD respectively 2.9 GSD have been reached. A standard deviation of 0.6 GSD for X and Y and 1.1 GSD for Z is satisfying and a usual accuracy for satellite images. A comparison of the generated height model based on the L1G-images with airborne LiDAR data (ALS) showed clear local systematic height errors of the height model based on L1G-images which could not be seen with L1R-images. The area based least squares matching leads to good results in open areas while in build up areas no accurate building determination is possible. Here SGM has a clear advantage with accurate roof structures corresponding to the 0.71m GSD. For the relative accuracy, that means the building height and the roof structure, it does not matter if L1G or L1R images are used.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Information systems
- Sozialwissenschaften (insg.)
- Geografie, Planung und Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Jahrgang 42, Nr. 3W4, 06.03.2018, S. 115-119.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Analysis of height models based on Kompsat-3 images
AU - Büyüksalih, Gürcan
AU - Bayburt, Serdar
AU - Jacobsen, Karsten
PY - 2018/3/6
Y1 - 2018/3/6
N2 - Height models are basic information required for disaster Management. Not in any case satisfying and actual height models are available, but they can be generated by satellite stereo pairs being more precise as InSAR. The Korean Kompsat-3 has a ground sampling distance of 0.71m. A stereo combination covering the main part of Istanbul has been used for the generation of height models. Kompsat-3 images are available as L1R images, corresponding close to the original image geometry, and as L1G, being projected to the SRTM 3 arcsec height model. For use of Semi Global Matching quasi epipolar images are required. They can be produced by just rotating the L1G-images to the stereo base, while with L1R-images requires at first a projection to a constant height level. The projection of L1G to the SRTM height models leads to height differences against the SRTM heights. The orientation of the L1R images with 71 ground control points (GCP) was possible in X and Y with 0.6 GSD and in Z with 1.1 GSD, while with L1G images only 1.2 GSD respectively 2.9 GSD have been reached. A standard deviation of 0.6 GSD for X and Y and 1.1 GSD for Z is satisfying and a usual accuracy for satellite images. A comparison of the generated height model based on the L1G-images with airborne LiDAR data (ALS) showed clear local systematic height errors of the height model based on L1G-images which could not be seen with L1R-images. The area based least squares matching leads to good results in open areas while in build up areas no accurate building determination is possible. Here SGM has a clear advantage with accurate roof structures corresponding to the 0.71m GSD. For the relative accuracy, that means the building height and the roof structure, it does not matter if L1G or L1R images are used.
AB - Height models are basic information required for disaster Management. Not in any case satisfying and actual height models are available, but they can be generated by satellite stereo pairs being more precise as InSAR. The Korean Kompsat-3 has a ground sampling distance of 0.71m. A stereo combination covering the main part of Istanbul has been used for the generation of height models. Kompsat-3 images are available as L1R images, corresponding close to the original image geometry, and as L1G, being projected to the SRTM 3 arcsec height model. For use of Semi Global Matching quasi epipolar images are required. They can be produced by just rotating the L1G-images to the stereo base, while with L1R-images requires at first a projection to a constant height level. The projection of L1G to the SRTM height models leads to height differences against the SRTM heights. The orientation of the L1R images with 71 ground control points (GCP) was possible in X and Y with 0.6 GSD and in Z with 1.1 GSD, while with L1G images only 1.2 GSD respectively 2.9 GSD have been reached. A standard deviation of 0.6 GSD for X and Y and 1.1 GSD for Z is satisfying and a usual accuracy for satellite images. A comparison of the generated height model based on the L1G-images with airborne LiDAR data (ALS) showed clear local systematic height errors of the height model based on L1G-images which could not be seen with L1R-images. The area based least squares matching leads to good results in open areas while in build up areas no accurate building determination is possible. Here SGM has a clear advantage with accurate roof structures corresponding to the 0.71m GSD. For the relative accuracy, that means the building height and the roof structure, it does not matter if L1G or L1R images are used.
KW - Area based matching
KW - Height model
KW - Image geometry
KW - Kompsat-3
KW - SGM
UR - http://www.scopus.com/inward/record.url?scp=85044527834&partnerID=8YFLogxK
U2 - 10.5194/isprs-archives-XLII-3-W4-115-2018
DO - 10.5194/isprs-archives-XLII-3-W4-115-2018
M3 - Conference article
AN - SCOPUS:85044527834
VL - 42
SP - 115
EP - 119
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
IS - 3W4
T2 - 2018 Geoinformation for Disaster Management Conference, Gi4DM 2018
Y2 - 18 March 2018 through 21 March 2018
ER -