Analysis of Ciarlet–Raviart mixed finite element methods for solving damped Boussinesq equation

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Maryam Parvizi
  • Amirreza Khodadadian
  • M. R. Eslahchi

Organisationseinheiten

Externe Organisationen

  • Technische Universität Wien (TUW)
  • Tarbiat Modarres University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer112818
FachzeitschriftJournal of Computational and Applied Mathematics
Jahrgang379
Frühes Online-Datum6 März 2020
PublikationsstatusVeröffentlicht - 1 Dez. 2020

Abstract

In this paper, we consider the numerical solution of damped Boussinesq equation using Ciarlet–Raviart mixed finite element method. An implicit finite difference scheme is used for the time discretization. A priori error estimates are analyzed and stability analysis of the method is shown. We obtain an optimal error estimate in L2 norm with quadratic or higher-order element, for both semi and fully discrete finite element approximations. Finally, numerical examples are given to verify the theoretical results.

ASJC Scopus Sachgebiete

Zitieren

Analysis of Ciarlet–Raviart mixed finite element methods for solving damped Boussinesq equation. / Parvizi, Maryam; Khodadadian, Amirreza; Eslahchi, M. R.
in: Journal of Computational and Applied Mathematics, Jahrgang 379, 112818, 01.12.2020.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Parvizi M, Khodadadian A, Eslahchi MR. Analysis of Ciarlet–Raviart mixed finite element methods for solving damped Boussinesq equation. Journal of Computational and Applied Mathematics. 2020 Dez 1;379:112818. Epub 2020 Mär 6. doi: 10.1016/j.cam.2020.112818
Download
@article{b679e68d5a124c9aba28f72e54a0093f,
title = "Analysis of Ciarlet–Raviart mixed finite element methods for solving damped Boussinesq equation",
abstract = "In this paper, we consider the numerical solution of damped Boussinesq equation using Ciarlet–Raviart mixed finite element method. An implicit finite difference scheme is used for the time discretization. A priori error estimates are analyzed and stability analysis of the method is shown. We obtain an optimal error estimate in L2 norm with quadratic or higher-order element, for both semi and fully discrete finite element approximations. Finally, numerical examples are given to verify the theoretical results.",
keywords = "Boussinesq equation, Ciarlet–Raviart method, Convergence, Finite difference method, Mixed finite element method, Stability",
author = "Maryam Parvizi and Amirreza Khodadadian and Eslahchi, {M. R.}",
year = "2020",
month = dec,
day = "1",
doi = "10.1016/j.cam.2020.112818",
language = "English",
volume = "379",
journal = "Journal of Computational and Applied Mathematics",
issn = "0377-0427",
publisher = "Elsevier",

}

Download

TY - JOUR

T1 - Analysis of Ciarlet–Raviart mixed finite element methods for solving damped Boussinesq equation

AU - Parvizi, Maryam

AU - Khodadadian, Amirreza

AU - Eslahchi, M. R.

PY - 2020/12/1

Y1 - 2020/12/1

N2 - In this paper, we consider the numerical solution of damped Boussinesq equation using Ciarlet–Raviart mixed finite element method. An implicit finite difference scheme is used for the time discretization. A priori error estimates are analyzed and stability analysis of the method is shown. We obtain an optimal error estimate in L2 norm with quadratic or higher-order element, for both semi and fully discrete finite element approximations. Finally, numerical examples are given to verify the theoretical results.

AB - In this paper, we consider the numerical solution of damped Boussinesq equation using Ciarlet–Raviart mixed finite element method. An implicit finite difference scheme is used for the time discretization. A priori error estimates are analyzed and stability analysis of the method is shown. We obtain an optimal error estimate in L2 norm with quadratic or higher-order element, for both semi and fully discrete finite element approximations. Finally, numerical examples are given to verify the theoretical results.

KW - Boussinesq equation

KW - Ciarlet–Raviart method

KW - Convergence

KW - Finite difference method

KW - Mixed finite element method

KW - Stability

UR - http://www.scopus.com/inward/record.url?scp=85083652850&partnerID=8YFLogxK

U2 - 10.1016/j.cam.2020.112818

DO - 10.1016/j.cam.2020.112818

M3 - Article

AN - SCOPUS:85083652850

VL - 379

JO - Journal of Computational and Applied Mathematics

JF - Journal of Computational and Applied Mathematics

SN - 0377-0427

M1 - 112818

ER -