An optical clock based on a highly charged ion

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Lukas Josef Spieß

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades2 Mai 2023
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2023

Abstract

Optische Uhren sind die Versuchsaufbauten mit der geringsten Unsicherheit. Dadurch finden sie Anwendung sowohl in der Zeitmessung als auch bei Test der Grundlagenphysik. Ihre außerordentliche Genauigkeit wird erreicht, in dem ihre Frequenz auf einen elektronischen Übergang in neutralen oder einfach geladenen Atomen referenziert wird. Die erzielten Ungenauigkeiten sind häufig limitiert durch externe Störungen, die die Übergangsfrequenz verschieben. Hochgeladene Ionen (HCI) sind intrinsisch weniger sensitive auf Störungen durch externe Felder, was sie zu interessanten Kandidaten für solche eine Anwendung machen. Der Bau einer optischen Uhr basierend auf einem HCI war lange nicht möglich, da sie bei Megakelvin Temperaturen erzeugt werden. Erst in den letzten Jahren, wurde die Isolation und das sympathetische Kühlen einzelner HCI in einer Paul Falle erreicht, was Quantenlogik Spektroskopie (QLS) mit Hz-Genauigkeit ermöglicht. In dieser Arbeit wird die erste optische Uhr basierend auf einem HCI präsentiert. Hierzu wurde QLS verwendet um den 2P1/2 - 2P3/2 Übergang bei 441 nm in Ar13+ koheränt anzuregen. Der große Unterschied im Ladungs-zu-Mass Verhältnis der verwendeten Ionen (40Ar13+, 9Be+) führt zu Schwierigkeiten beim Kühlen bestimmter Bewegungsmoden. Dies wird gelöst, in dem eine neue algorithmische Kühlmethode verwendet wird, wobei die niedrigste je berichtete Temperatur für ein HCI erreicht wird. Eine detaillierte Untersuchung des experimentellen Aufbaus liefert eine systematische Unsicherheit von 2 × 10^−17, was vergleichbar ist mit anderen optischen Uhren. Ein Uhrenvergleich wurde durchgeführt und die daraus abgeleitede Übergangsfrequenz verbessert deren Genauigkeit um acht Größenordnungen. Die Isotopieverschiebung (40Ar13+ - 36Ar13+) wird um neun Größenordnungen genauer gemessen, was den quantenelektrodynamischen Kernrückstoß auflöst, ein Effekt der zuvor nicht in einem Mehrelektronen System beobachtet wurde. Die Ar13+ Uhr ist limitiert durch ihre statistische Unsicherheit. Dies kann überwunden werden in dem ein System mit einem Übergang mit schmallerer Linienbreite verwendet wird. Deren experimenteller Nachweis bleibt schwiering solange keine Daten aus Fluroszensmessung vorliegen. Um dies zu verbessern, wird eine optische Dipolkraft demonstriert, welche zustandserhaltend ist und eine größere Linienbreite erreicht als konventionelle Rabi-Anregung. Dies ermöglichte es eine Vielzahl von Uhrenübergängen in HCI experimentell zu identifizieren, bevor sie in optischen Uhren genutzt werden.

Zitieren

An optical clock based on a highly charged ion. / Spieß, Lukas Josef.
Hannover, 2023. 186 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Spieß, LJ 2023, 'An optical clock based on a highly charged ion', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/13691
Spieß, L. J. (2023). An optical clock based on a highly charged ion. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/13691
Spieß LJ. An optical clock based on a highly charged ion. Hannover, 2023. 186 S. doi: 10.15488/13691
Spieß, Lukas Josef. / An optical clock based on a highly charged ion. Hannover, 2023. 186 S.
Download
@phdthesis{b7bcdbb165364612aa48e8c170419b7e,
title = "An optical clock based on a highly charged ion",
abstract = "Optical clocks have demonstrated the lowest uncertainties among all experimental devices with applications in time keeping as well as for tests of fundamental physics. Their exceptional accuracy is realised by referencing their frequency to an electronic transition in either neutral or singly-charged atoms. The achieved uncertainties are often limited by external perturbations shifting the measured transition frequency. Highly charged ions (HCI) are intrinsically less sensitive to external-field perturbations, making them interesting candidates for such an application. The construction of a HCI-based optical clock was for along time prohibited by the megakelvin temperatures at which HCI are produced. Only in recent years, isolation and sympathetic cooling of individual HCI in a Paul trap has been achieved, which enables the application of quantum logic spectroscopy (QLS), resolving a narrow transition with Hz-level accuracy. In this thesis, the first optical clock based on a HCI is presented. For this, QLS is used to coherently excite the 2P1/2 - 2P3/2 transition at 441 nm in Ar13+. The large charge-to-mass ratio mismatch between the employed ions (40Ar13+, 9Be+), leads to challenges for cooling of some of the motional modes. This is overcome by employing a novel algorithmic cooling protocol, leading to the lowest temperature reported for a HCI. A detailed evaluation of the experimental setup yields a systematic uncertainty of 2 × 10^−17 comparable to many optical clocks in operation. A path to an uncertainty below 10^−18 is discussed and can be achieved with technical improvements. An optical clock comparison was performed and the derived absolute frequency of the clock transition improves its uncertainty by eight orders of magnitude. A nine orders of magnitude improvement of the isotope shift (40Ar13+ - 36Ar13+) resolves the quantum electrodynamical nuclear recoil, an effect not previously observed in a many-electron system. The Ar13+ clock is limited by its statistical uncertainty, which can be overcome by employing species offering transitions with narrower linewidth. However, their experimental determination remains challenging in the absence of data from fluorescence measurements. To aid with this, an optical dipole force technique is demonstrated, which is initial-state preserving and achieves broader linewidths than conventional Rabi interrogation. This will allow a plethora of clock transitions in HCI to be experimentally identified before employing them in optical clocks.",
author = "Spie{\ss}, {Lukas Josef}",
note = "Doctoral thesis",
year = "2023",
doi = "10.15488/13691",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - An optical clock based on a highly charged ion

AU - Spieß, Lukas Josef

N1 - Doctoral thesis

PY - 2023

Y1 - 2023

N2 - Optical clocks have demonstrated the lowest uncertainties among all experimental devices with applications in time keeping as well as for tests of fundamental physics. Their exceptional accuracy is realised by referencing their frequency to an electronic transition in either neutral or singly-charged atoms. The achieved uncertainties are often limited by external perturbations shifting the measured transition frequency. Highly charged ions (HCI) are intrinsically less sensitive to external-field perturbations, making them interesting candidates for such an application. The construction of a HCI-based optical clock was for along time prohibited by the megakelvin temperatures at which HCI are produced. Only in recent years, isolation and sympathetic cooling of individual HCI in a Paul trap has been achieved, which enables the application of quantum logic spectroscopy (QLS), resolving a narrow transition with Hz-level accuracy. In this thesis, the first optical clock based on a HCI is presented. For this, QLS is used to coherently excite the 2P1/2 - 2P3/2 transition at 441 nm in Ar13+. The large charge-to-mass ratio mismatch between the employed ions (40Ar13+, 9Be+), leads to challenges for cooling of some of the motional modes. This is overcome by employing a novel algorithmic cooling protocol, leading to the lowest temperature reported for a HCI. A detailed evaluation of the experimental setup yields a systematic uncertainty of 2 × 10^−17 comparable to many optical clocks in operation. A path to an uncertainty below 10^−18 is discussed and can be achieved with technical improvements. An optical clock comparison was performed and the derived absolute frequency of the clock transition improves its uncertainty by eight orders of magnitude. A nine orders of magnitude improvement of the isotope shift (40Ar13+ - 36Ar13+) resolves the quantum electrodynamical nuclear recoil, an effect not previously observed in a many-electron system. The Ar13+ clock is limited by its statistical uncertainty, which can be overcome by employing species offering transitions with narrower linewidth. However, their experimental determination remains challenging in the absence of data from fluorescence measurements. To aid with this, an optical dipole force technique is demonstrated, which is initial-state preserving and achieves broader linewidths than conventional Rabi interrogation. This will allow a plethora of clock transitions in HCI to be experimentally identified before employing them in optical clocks.

AB - Optical clocks have demonstrated the lowest uncertainties among all experimental devices with applications in time keeping as well as for tests of fundamental physics. Their exceptional accuracy is realised by referencing their frequency to an electronic transition in either neutral or singly-charged atoms. The achieved uncertainties are often limited by external perturbations shifting the measured transition frequency. Highly charged ions (HCI) are intrinsically less sensitive to external-field perturbations, making them interesting candidates for such an application. The construction of a HCI-based optical clock was for along time prohibited by the megakelvin temperatures at which HCI are produced. Only in recent years, isolation and sympathetic cooling of individual HCI in a Paul trap has been achieved, which enables the application of quantum logic spectroscopy (QLS), resolving a narrow transition with Hz-level accuracy. In this thesis, the first optical clock based on a HCI is presented. For this, QLS is used to coherently excite the 2P1/2 - 2P3/2 transition at 441 nm in Ar13+. The large charge-to-mass ratio mismatch between the employed ions (40Ar13+, 9Be+), leads to challenges for cooling of some of the motional modes. This is overcome by employing a novel algorithmic cooling protocol, leading to the lowest temperature reported for a HCI. A detailed evaluation of the experimental setup yields a systematic uncertainty of 2 × 10^−17 comparable to many optical clocks in operation. A path to an uncertainty below 10^−18 is discussed and can be achieved with technical improvements. An optical clock comparison was performed and the derived absolute frequency of the clock transition improves its uncertainty by eight orders of magnitude. A nine orders of magnitude improvement of the isotope shift (40Ar13+ - 36Ar13+) resolves the quantum electrodynamical nuclear recoil, an effect not previously observed in a many-electron system. The Ar13+ clock is limited by its statistical uncertainty, which can be overcome by employing species offering transitions with narrower linewidth. However, their experimental determination remains challenging in the absence of data from fluorescence measurements. To aid with this, an optical dipole force technique is demonstrated, which is initial-state preserving and achieves broader linewidths than conventional Rabi interrogation. This will allow a plethora of clock transitions in HCI to be experimentally identified before employing them in optical clocks.

U2 - 10.15488/13691

DO - 10.15488/13691

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren