Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Floating Wind; Systems Design and Multi-Fidelity/Multi-Disciplinary Modelling; Future Wind; Smaller Wind Turbines |
Seitenumfang | 11 |
Band | 2265 |
Auflage | 4 |
Publikationsstatus | Veröffentlicht - 2 Juni 2022 |
Veranstaltung | 2022 Science of Making Torque from Wind, TORQUE 2022 - Delft, Niederlande Dauer: 1 Juni 2022 → 3 Juni 2022 |
Publikationsreihe
Name | Journal of Physics: Conference Series |
---|---|
Herausgeber (Verlag) | IOP Publishing Ltd. |
Band | 2265 |
ISSN (Print) | 1742-6588 |
Abstract
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Ingenieurwesen (sonstige)
Fachgebiet (basierend auf ÖFOS 2012)
- TECHNISCHE WISSENSCHAFTEN
- Umweltingenieurwesen, Angewandte Geowissenschaften
- Umwelttechnik
- Erneuerbare Energie
- TECHNISCHE WISSENSCHAFTEN
- Maschinenbau
- Maschinenbau
- Computational Engineering
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Floating Wind; Systems Design and Multi-Fidelity/Multi-Disciplinary Modelling; Future Wind; Smaller Wind Turbines. Band 2265 4. Aufl. 2022. (Journal of Physics: Conference Series; Band 2265).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - An open-source framework for the uncertainty quantification of aeroelastic wind turbine simulation tools
AU - Verdonck, Hendrik
AU - Hach, Oliver
AU - Polman, Jelmer Derk
AU - Braun, Otto
AU - Balzani, Claudio
AU - Müller, Sarah
AU - Rieke, Johannes
N1 - Funding Information: This work is a collaboration of three partners from research and industry in the frame of the German national research project QuexUS. This project is funded by the German Federal Ministry for Economic Affairs and Climate Action, grant no. 03EE3011A/B.
PY - 2022/6/2
Y1 - 2022/6/2
N2 - The uncertainty quantification of aeroelastic wind turbine simulations is an active research topic. This paper presents a dedicated, open-source framework for this purpose. The framework is built around the uncertainpy package, likewise available as open source. Uncertainty quantification is done with a non-intrusive, global and variance-based surrogate model, using PCE (i.e., polynomial chaos expansion). Two methods to handle the uncertain parameter distribution along the blades are presented. The framework is demonstrated on the basis of an aeroelastic stability analysis. A sensitivity analysis is performed on the influence of the flapwise, edgewise and torsional stiffness of the blades on the damping of the most critical mode for both a Bladed linearization and a Bladed time domain simulation. The sensitivities of both models are in excellent agreement and the PCE surrogate models are shown to be accurate approximations of the true models.
AB - The uncertainty quantification of aeroelastic wind turbine simulations is an active research topic. This paper presents a dedicated, open-source framework for this purpose. The framework is built around the uncertainpy package, likewise available as open source. Uncertainty quantification is done with a non-intrusive, global and variance-based surrogate model, using PCE (i.e., polynomial chaos expansion). Two methods to handle the uncertain parameter distribution along the blades are presented. The framework is demonstrated on the basis of an aeroelastic stability analysis. A sensitivity analysis is performed on the influence of the flapwise, edgewise and torsional stiffness of the blades on the damping of the most critical mode for both a Bladed linearization and a Bladed time domain simulation. The sensitivities of both models are in excellent agreement and the PCE surrogate models are shown to be accurate approximations of the true models.
UR - http://www.scopus.com/inward/record.url?scp=85131885138&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/2265/4/042039
DO - 10.1088/1742-6596/2265/4/042039
M3 - Conference contribution
AN - SCOPUS:85131885138
VL - 2265
T3 - Journal of Physics: Conference Series
BT - Floating Wind; Systems Design and Multi-Fidelity/Multi-Disciplinary Modelling; Future Wind; Smaller Wind Turbines
T2 - 2022 Science of Making Torque from Wind, TORQUE 2022
Y2 - 1 June 2022 through 3 June 2022
ER -