An Index Formula for Groups of Isometric Linear Canonical Transformations

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Anton Savin
  • Elmar Schrohe

Organisationseinheiten

Externe Organisationen

  • Peoples' Friendship University of Russia (RUDN)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)983-1013
Seitenumfang31
FachzeitschriftDocumenta mathematica
Jahrgang27
PublikationsstatusVeröffentlicht - 2022

Abstract

We define a representation of the unitary group \(U(n)\) by metaplectic operators acting on \(L^2(\mathbb{R}^n)\) and consider the operator algebra generated by the operators of the representation and pseudodifferential operators of Shubin class. Under suitable conditions, we prove the Fredholm property for elements in this algebra and obtain an index formula.

ASJC Scopus Sachgebiete

Zitieren

An Index Formula for Groups of Isometric Linear Canonical Transformations. / Savin, Anton; Schrohe, Elmar.
in: Documenta mathematica, Jahrgang 27, 2022, S. 983-1013.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Savin A, Schrohe E. An Index Formula for Groups of Isometric Linear Canonical Transformations. Documenta mathematica. 2022;27:983-1013. doi: 10.48550/arXiv.2008.00734, 10.25537/dm.2022v27.983-1013
Savin, Anton ; Schrohe, Elmar. / An Index Formula for Groups of Isometric Linear Canonical Transformations. in: Documenta mathematica. 2022 ; Jahrgang 27. S. 983-1013.
Download
@article{4fcf1582bcfb428da7f0ed20a7db3a33,
title = "An Index Formula for Groups of Isometric Linear Canonical Transformations",
abstract = " We define a representation of the unitary group \(U(n)\) by metaplectic operators acting on \(L^2(\mathbb{R}^n)\) and consider the operator algebra generated by the operators of the representation and pseudodifferential operators of Shubin class. Under suitable conditions, we prove the Fredholm property for elements in this algebra and obtain an index formula. ",
keywords = "Index theory, metaplectic operators, Shubin class pseudodifferential operators",
author = "Anton Savin and Elmar Schrohe",
note = "Funding Information: We thank Gennadi Kasparov for pointing out the Bott periodicity theorem in [19] to us. The work of the first author was supported by the Ministry of Science and Higher Education of the Russian Federation: agreement no. 075-03-2020-223/3 (FSSF-2020-0018); that of the second by DFG through project SCHR 319/8-1.",
year = "2022",
doi = "10.48550/arXiv.2008.00734",
language = "English",
volume = "27",
pages = "983--1013",
journal = "Documenta mathematica",
issn = "1431-0635",
publisher = "Deutsche Mathematiker Vereinigung",

}

Download

TY - JOUR

T1 - An Index Formula for Groups of Isometric Linear Canonical Transformations

AU - Savin, Anton

AU - Schrohe, Elmar

N1 - Funding Information: We thank Gennadi Kasparov for pointing out the Bott periodicity theorem in [19] to us. The work of the first author was supported by the Ministry of Science and Higher Education of the Russian Federation: agreement no. 075-03-2020-223/3 (FSSF-2020-0018); that of the second by DFG through project SCHR 319/8-1.

PY - 2022

Y1 - 2022

N2 - We define a representation of the unitary group \(U(n)\) by metaplectic operators acting on \(L^2(\mathbb{R}^n)\) and consider the operator algebra generated by the operators of the representation and pseudodifferential operators of Shubin class. Under suitable conditions, we prove the Fredholm property for elements in this algebra and obtain an index formula.

AB - We define a representation of the unitary group \(U(n)\) by metaplectic operators acting on \(L^2(\mathbb{R}^n)\) and consider the operator algebra generated by the operators of the representation and pseudodifferential operators of Shubin class. Under suitable conditions, we prove the Fredholm property for elements in this algebra and obtain an index formula.

KW - Index theory

KW - metaplectic operators

KW - Shubin class pseudodifferential operators

UR - http://www.scopus.com/inward/record.url?scp=85134665983&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2008.00734

DO - 10.48550/arXiv.2008.00734

M3 - Article

VL - 27

SP - 983

EP - 1013

JO - Documenta mathematica

JF - Documenta mathematica

SN - 1431-0635

ER -