An equivariant version of the Euler obstruction

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Wolfgang Ebeling
  • Sabir M. Gusein-Zade

Organisationseinheiten

Externe Organisationen

  • Lomonosov Moscow State University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)199-208
Seitenumfang10
FachzeitschriftBulletin of the Brazilian Mathematical Society
Jahrgang48
Ausgabenummer2
PublikationsstatusVeröffentlicht - 1 Juni 2017

Abstract

For a complex analytic variety with an action of a finite group and for an invariant 1-form on it, we give an equivariant version (with values in the Burnside ring of the group) of the local Euler obstruction of the 1-form and describe its relation with the equivariant radial index defined earlier. This leads to equivariant versions of the local Euler obstruction of a complex analytic space and of the global Euler obstruction.

ASJC Scopus Sachgebiete

Zitieren

An equivariant version of the Euler obstruction. / Ebeling, Wolfgang; Gusein-Zade, Sabir M.
in: Bulletin of the Brazilian Mathematical Society, Jahrgang 48, Nr. 2, 01.06.2017, S. 199-208.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Ebeling W, Gusein-Zade SM. An equivariant version of the Euler obstruction. Bulletin of the Brazilian Mathematical Society. 2017 Jun 1;48(2):199-208. doi: 10.1007/s00574-016-0022-8
Ebeling, Wolfgang ; Gusein-Zade, Sabir M. / An equivariant version of the Euler obstruction. in: Bulletin of the Brazilian Mathematical Society. 2017 ; Jahrgang 48, Nr. 2. S. 199-208.
Download
@article{1183e848b9204c17be8d8f7227a9a502,
title = "An equivariant version of the Euler obstruction",
abstract = "For a complex analytic variety with an action of a finite group and for an invariant 1-form on it, we give an equivariant version (with values in the Burnside ring of the group) of the local Euler obstruction of the 1-form and describe its relation with the equivariant radial index defined earlier. This leads to equivariant versions of the local Euler obstruction of a complex analytic space and of the global Euler obstruction.",
keywords = "Burnside ring, Euler obstruction, Group action",
author = "Wolfgang Ebeling and Gusein-Zade, {Sabir M.}",
note = "Funding information: Partially supported by DFG (Mercator fellowship, Eb 102/8-1) and RFBR–16-01-00409.",
year = "2017",
month = jun,
day = "1",
doi = "10.1007/s00574-016-0022-8",
language = "English",
volume = "48",
pages = "199--208",
journal = "Bulletin of the Brazilian Mathematical Society",
issn = "1678-7544",
publisher = "Springer New York",
number = "2",

}

Download

TY - JOUR

T1 - An equivariant version of the Euler obstruction

AU - Ebeling, Wolfgang

AU - Gusein-Zade, Sabir M.

N1 - Funding information: Partially supported by DFG (Mercator fellowship, Eb 102/8-1) and RFBR–16-01-00409.

PY - 2017/6/1

Y1 - 2017/6/1

N2 - For a complex analytic variety with an action of a finite group and for an invariant 1-form on it, we give an equivariant version (with values in the Burnside ring of the group) of the local Euler obstruction of the 1-form and describe its relation with the equivariant radial index defined earlier. This leads to equivariant versions of the local Euler obstruction of a complex analytic space and of the global Euler obstruction.

AB - For a complex analytic variety with an action of a finite group and for an invariant 1-form on it, we give an equivariant version (with values in the Burnside ring of the group) of the local Euler obstruction of the 1-form and describe its relation with the equivariant radial index defined earlier. This leads to equivariant versions of the local Euler obstruction of a complex analytic space and of the global Euler obstruction.

KW - Burnside ring

KW - Euler obstruction

KW - Group action

UR - http://www.scopus.com/inward/record.url?scp=84996910399&partnerID=8YFLogxK

UR - https://arxiv.org/abs/1407.6587

U2 - 10.1007/s00574-016-0022-8

DO - 10.1007/s00574-016-0022-8

M3 - Article

AN - SCOPUS:84996910399

VL - 48

SP - 199

EP - 208

JO - Bulletin of the Brazilian Mathematical Society

JF - Bulletin of the Brazilian Mathematical Society

SN - 1678-7544

IS - 2

ER -