Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 108351 |
Fachzeitschrift | International Journal of Mechanical Sciences |
Jahrgang | 253 |
Frühes Online-Datum | 15 Apr. 2023 |
Publikationsstatus | Veröffentlicht - 1 Sept. 2023 |
Abstract
As a diffused fracture theory, phase-field models can seamlessly simulate complex crack patterns such as extending, branching, and merging. Despite the success of phase-field models, there are two issues in previous methods of three-dimensional (3-D) fracture. Firstly, the nonlinear governing equations lead to the huge computational costs, which hinder the application of phase-field models in 3-D problems. Secondly, these models, which are mostly developed based on a simple quadratic degradation function, provide numerical solutions that are sensitive to a length scale. Hence, this work addresses an efficient adaptive phase-field model with the aid of trilinear multi-node elements. The order of the elements remains constant with the increase of the number of nodes. As the mesh size and length scale significantly influence the numerical precision, a robust adaptive criterion is established in which the element refinement is controlled by both internal length scale and phase-field. According to the criterion, an expected mesh density in the failure domain can be obtained even for nonuniform initial mesh. Besides, being able to extend the phase-field regularized cohesive zone model, the adaptive model provides length scale insensitive responses for both crack path and peak load. The failure of brittle and quasi-brittle materials in three-dimensional conditions, including simple and mixed-mode fracture, can be simulated by the proposed model. Several benchmark examples are analyzed to show the efficiency and accuracy of the trilinear element-based adaptive phase-field model (TAPFM), and the results are compared with the standard phase-field model as well as experimental data.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Tief- und Ingenieurbau
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Maschinenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Journal of Mechanical Sciences, Jahrgang 253, 108351, 01.09.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - An efficient adaptive length scale insensitive phase-field model for three-dimensional fracture of solids using trilinear multi-node elements
AU - Yue, Qiang
AU - Wang, Qiao
AU - Zhou, Wei
AU - Rabczuk, Timon
AU - Zhuang, Xiaoying
AU - Liu, Biao
AU - Chang, Xiaolin
N1 - Funding Information: Financial support for the project from the National Key R&D Program of China (No. 2022YFC3005504 ) and National Natural Science Foundation of China (No. 51979207 , No. U2040223 ) is acknowledged.
PY - 2023/9/1
Y1 - 2023/9/1
N2 - As a diffused fracture theory, phase-field models can seamlessly simulate complex crack patterns such as extending, branching, and merging. Despite the success of phase-field models, there are two issues in previous methods of three-dimensional (3-D) fracture. Firstly, the nonlinear governing equations lead to the huge computational costs, which hinder the application of phase-field models in 3-D problems. Secondly, these models, which are mostly developed based on a simple quadratic degradation function, provide numerical solutions that are sensitive to a length scale. Hence, this work addresses an efficient adaptive phase-field model with the aid of trilinear multi-node elements. The order of the elements remains constant with the increase of the number of nodes. As the mesh size and length scale significantly influence the numerical precision, a robust adaptive criterion is established in which the element refinement is controlled by both internal length scale and phase-field. According to the criterion, an expected mesh density in the failure domain can be obtained even for nonuniform initial mesh. Besides, being able to extend the phase-field regularized cohesive zone model, the adaptive model provides length scale insensitive responses for both crack path and peak load. The failure of brittle and quasi-brittle materials in three-dimensional conditions, including simple and mixed-mode fracture, can be simulated by the proposed model. Several benchmark examples are analyzed to show the efficiency and accuracy of the trilinear element-based adaptive phase-field model (TAPFM), and the results are compared with the standard phase-field model as well as experimental data.
AB - As a diffused fracture theory, phase-field models can seamlessly simulate complex crack patterns such as extending, branching, and merging. Despite the success of phase-field models, there are two issues in previous methods of three-dimensional (3-D) fracture. Firstly, the nonlinear governing equations lead to the huge computational costs, which hinder the application of phase-field models in 3-D problems. Secondly, these models, which are mostly developed based on a simple quadratic degradation function, provide numerical solutions that are sensitive to a length scale. Hence, this work addresses an efficient adaptive phase-field model with the aid of trilinear multi-node elements. The order of the elements remains constant with the increase of the number of nodes. As the mesh size and length scale significantly influence the numerical precision, a robust adaptive criterion is established in which the element refinement is controlled by both internal length scale and phase-field. According to the criterion, an expected mesh density in the failure domain can be obtained even for nonuniform initial mesh. Besides, being able to extend the phase-field regularized cohesive zone model, the adaptive model provides length scale insensitive responses for both crack path and peak load. The failure of brittle and quasi-brittle materials in three-dimensional conditions, including simple and mixed-mode fracture, can be simulated by the proposed model. Several benchmark examples are analyzed to show the efficiency and accuracy of the trilinear element-based adaptive phase-field model (TAPFM), and the results are compared with the standard phase-field model as well as experimental data.
KW - Adaptive strategy
KW - Fracture
KW - Phase-field model
KW - Three-dimensional modelling
KW - Trilinear multi-node elements
UR - http://www.scopus.com/inward/record.url?scp=85153567274&partnerID=8YFLogxK
U2 - 10.1016/j.ijmecsci.2023.108351
DO - 10.1016/j.ijmecsci.2023.108351
M3 - Article
AN - SCOPUS:85153567274
VL - 253
JO - International Journal of Mechanical Sciences
JF - International Journal of Mechanical Sciences
SN - 0020-7403
M1 - 108351
ER -