Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2543-2556 |
Seitenumfang | 14 |
Fachzeitschrift | Mathematische Nachrichten |
Jahrgang | 291 |
Ausgabenummer | 17-18 |
Frühes Online-Datum | 24 Juli 2018 |
Publikationsstatus | Veröffentlicht - Dez. 2018 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Nachrichten, Jahrgang 291, Nr. 17-18, 12.2018, S. 2543-2556.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - An algebraic formula for the index of a 1-form on a real quotient singularity
AU - Ebeling, Wolfgang
AU - Gusein-Zade, Sabir M.
N1 - Funding information: Russian Science Foundation, Grant/Award Number: 16-11-10018 ; Deutsche Forschungs-gemeinschaft, Grant/Award Number: Eb 102/9-1 Partially supported by DFG. The work of the second author (Sections 1, 2, 4, 6, and 9) was supported by the grant 16-11-10018 of the Russian Science Foundation.
PY - 2018/12
Y1 - 2018/12
N2 - Let a finite abelian group G act (linearly) on the space ℝn and thus on its complexification ℂn. Let W be the real part of the quotient ℂn/G (in general W≠ℝn/G). We give an algebraic formula for the radial index of a 1-form on the real quotient W. It is shown that this index is equal to the signature of the restriction of the residue pairing to the G-invariant part ΩGω of Ωω=Ωnℝn,0/ω∧Ωn−1ℝn,0. For a G-invariant function f, one has the so-called quantum cohomology group defined in the quantum singularity theory (FJRW-theory). We show that, for a real function f, the signature of the residue pairing on the real part of the quantum cohomology group is equal to the orbifold index of the 1-form df on the preimage π−1(W) of W under the natural quotient map.
AB - Let a finite abelian group G act (linearly) on the space ℝn and thus on its complexification ℂn. Let W be the real part of the quotient ℂn/G (in general W≠ℝn/G). We give an algebraic formula for the radial index of a 1-form on the real quotient W. It is shown that this index is equal to the signature of the restriction of the residue pairing to the G-invariant part ΩGω of Ωω=Ωnℝn,0/ω∧Ωn−1ℝn,0. For a G-invariant function f, one has the so-called quantum cohomology group defined in the quantum singularity theory (FJRW-theory). We show that, for a real function f, the signature of the residue pairing on the real part of the quantum cohomology group is equal to the orbifold index of the 1-form df on the preimage π−1(W) of W under the natural quotient map.
KW - 1-form
KW - group action
KW - index
KW - real quotient singularity
KW - signature formula
UR - http://www.scopus.com/inward/record.url?scp=85058391344&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1708.09219
DO - 10.48550/arXiv.1708.09219
M3 - Article
AN - SCOPUS:85058391344
VL - 291
SP - 2543
EP - 2556
JO - Mathematische Nachrichten
JF - Mathematische Nachrichten
SN - 0025-584X
IS - 17-18
ER -