Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 49-77 |
Seitenumfang | 29 |
Fachzeitschrift | Mathematical Modelling of Natural Phenomena |
Jahrgang | 3 |
Ausgabenummer | 7 |
Publikationsstatus | Veröffentlicht - Jan. 2008 |
Abstract
Proteus mirabilis are bacteria that make strikingly regular spatial-temporal patterns on agar surfaces. In this paper we investigate a mathematical model that has been shown to display these structures when solved numerically. The model consists of an ordinary differential equation coupled with a partial differential equation involving a first-order hyperbolic aging term together with nonlinear degenerate diffusion. The system is shown to admit global weak solutions.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Modellierung und Simulation
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematical Modelling of Natural Phenomena, Jahrgang 3, Nr. 7, 01.2008, S. 49-77.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - An age and spatially structured population model for proteus mirabilis swarm-colony development
AU - Laurençot, Ph
AU - Walker, Ch
N1 - Copyright: Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2008/1
Y1 - 2008/1
N2 - Proteus mirabilis are bacteria that make strikingly regular spatial-temporal patterns on agar surfaces. In this paper we investigate a mathematical model that has been shown to display these structures when solved numerically. The model consists of an ordinary differential equation coupled with a partial differential equation involving a first-order hyperbolic aging term together with nonlinear degenerate diffusion. The system is shown to admit global weak solutions.
AB - Proteus mirabilis are bacteria that make strikingly regular spatial-temporal patterns on agar surfaces. In this paper we investigate a mathematical model that has been shown to display these structures when solved numerically. The model consists of an ordinary differential equation coupled with a partial differential equation involving a first-order hyperbolic aging term together with nonlinear degenerate diffusion. The system is shown to admit global weak solutions.
KW - age structure
KW - degenerate diffusion
KW - population models
UR - http://www.scopus.com/inward/record.url?scp=71549142665&partnerID=8YFLogxK
U2 - 10.1051/mmnp:2008041
DO - 10.1051/mmnp:2008041
M3 - Article
AN - SCOPUS:71549142665
VL - 3
SP - 49
EP - 77
JO - Mathematical Modelling of Natural Phenomena
JF - Mathematical Modelling of Natural Phenomena
SN - 0973-5348
IS - 7
ER -