Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 113163 |
Fachzeitschrift | Computer Methods in Applied Mechanics and Engineering |
Jahrgang | 368 |
Frühes Online-Datum | 6 Juni 2020 |
Publikationsstatus | Veröffentlicht - 15 Aug. 2020 |
Abstract
We present an adaptive multilevel Monte Carlo algorithm for solving the stochastic drift–diffusion–Poisson system with non-zero recombination rate. The a-posteriori error is estimated to enable goal-oriented adaptive mesh refinement for the spatial dimensions, while the a-priori error is estimated to guarantee linear convergence of the H1 error. In the adaptive mesh refinement, efficient estimation of the error indicator gives rise to better error control. For the stochastic dimensions, we use the multilevel Monte Carlo method to solve this system of stochastic partial differential equations. Finally, the advantage of the technique developed here compared to uniform mesh refinement is discussed using a realistic numerical example.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Numerische Mechanik
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Maschinenbau
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
- Informatik (insg.)
- Angewandte Informatik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Computer Methods in Applied Mechanics and Engineering, Jahrgang 368, 113163, 15.08.2020.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - An adaptive multilevel Monte Carlo algorithm for the stochastic drift–diffusion–Poisson system
AU - Khodadadian, Amirreza
AU - Parvizi, Maryam
AU - Heitzinger, Clemens
N1 - Funding Information: The first and the last authors acknowledge support by FWF (Austrian Science Fund) START project no. Y660 PDE Models for Nanotechnology. The second author also acknowledges support by FWF project no. P28367-N35 . The authors appreciate useful comments by Markus Melenk (TU Wien). The authors also acknowledge the helpful comments by three anonymous reviewers.
PY - 2020/8/15
Y1 - 2020/8/15
N2 - We present an adaptive multilevel Monte Carlo algorithm for solving the stochastic drift–diffusion–Poisson system with non-zero recombination rate. The a-posteriori error is estimated to enable goal-oriented adaptive mesh refinement for the spatial dimensions, while the a-priori error is estimated to guarantee linear convergence of the H1 error. In the adaptive mesh refinement, efficient estimation of the error indicator gives rise to better error control. For the stochastic dimensions, we use the multilevel Monte Carlo method to solve this system of stochastic partial differential equations. Finally, the advantage of the technique developed here compared to uniform mesh refinement is discussed using a realistic numerical example.
AB - We present an adaptive multilevel Monte Carlo algorithm for solving the stochastic drift–diffusion–Poisson system with non-zero recombination rate. The a-posteriori error is estimated to enable goal-oriented adaptive mesh refinement for the spatial dimensions, while the a-priori error is estimated to guarantee linear convergence of the H1 error. In the adaptive mesh refinement, efficient estimation of the error indicator gives rise to better error control. For the stochastic dimensions, we use the multilevel Monte Carlo method to solve this system of stochastic partial differential equations. Finally, the advantage of the technique developed here compared to uniform mesh refinement is discussed using a realistic numerical example.
KW - A-posteriori error estimation
KW - A-priori error estimation
KW - Adaptive mesh refinement
KW - Multilevel Monte Carlo
KW - Stochastic drift–diffusion–Poisson system
KW - Stochastic partial differential equation (SPDEs)
UR - http://www.scopus.com/inward/record.url?scp=85085841358&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1904.05851
DO - 10.48550/arXiv.1904.05851
M3 - Article
AN - SCOPUS:85085841358
VL - 368
JO - Computer Methods in Applied Mechanics and Engineering
JF - Computer Methods in Applied Mechanics and Engineering
SN - 0045-7825
M1 - 113163
ER -