Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 137-140 |
Seitenumfang | 4 |
Fachzeitschrift | Current Directions in Biomedical Engineering |
Jahrgang | 5 |
Ausgabenummer | 1 |
Frühes Online-Datum | 18 Sept. 2019 |
Publikationsstatus | Veröffentlicht - 2019 |
Abstract
The laryngeal adductor reflex (LAR) is an important protective function of the larynx to prevent aspiration and potentially fatal aspiration pneumonia by rapidly closing the glottis. Recently, a novel method for targeted stimulation and evaluation of the LAR has been proposed to enable non-invasive and reproducible LAR performance grading and to extend the understanding of this reflexive mechanism. The method relies on the laryngoscopically controlled application of accelerated water droplets in association with a high-speed camera system for LAR stimulation site and reflex onset latency identification. Prototype laryngoscopes destined for this method require validation prior to extensive clinical trials. Furthermore, demonstrations using a realistic phantom could increase patient compliance in future clinical settings. For these purposes, a model of the human larynx including vocal fold actuation for LAR simulation was developed in this work. The combination of image processing based on a custom algorithm and individual motorization of each vocal fold enables spatio-temporal droplet impact detection and controlled vocal fold adduction. To simulate different LAR pathologies, the current implementation allows to individually adjust the reflex onset latency of the ipsi- and contralateral vocal fold with respect to the automatically detected impact location of the droplet as well as the maximum adduction angle of each vocal fold. An experimental study of the temporal offset between desired and observed LAR onset latency due to image processing was performed for three average droplet masses based on highspeed recordings of the phantom. Median offsets of 100, 120 and 128 ms were found (n=16). This offset most likely has a multifactorial cause (image processing delay, inertia of the mechanical components, droplet motion). The observed offset increased with increasing droplet mass, as fluid oscillations after impact may have been detected as motion. In future work, alternative methods for droplet impact detection could be explored and the observed offset could be used for compensation of this undesirable delay.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Biomedizintechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Current Directions in Biomedical Engineering, Jahrgang 5, Nr. 1, 2019, S. 137-140.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - An actuated larynx phantom for pre-clinical evaluation of droplet-based reflex-stimulating laryngoscopes
AU - Fast, Jacob Friedemann
AU - He, Jiazhen
AU - Ortmaier, Tobias
AU - Jungheim, Michael
AU - Ptok, Martin
AU - Kahrs, Lüder Alexander
N1 - Funding information: Research funding: This work has been funded by Deutsche Forschungsgemeinschaft (DFG) grants KA 2975/6-1 and PT 2/5-1. Conflict of interest: Authors state no conflict of interest. Ethical approval: The conducted research is not related to either human or animals use.
PY - 2019
Y1 - 2019
N2 - The laryngeal adductor reflex (LAR) is an important protective function of the larynx to prevent aspiration and potentially fatal aspiration pneumonia by rapidly closing the glottis. Recently, a novel method for targeted stimulation and evaluation of the LAR has been proposed to enable non-invasive and reproducible LAR performance grading and to extend the understanding of this reflexive mechanism. The method relies on the laryngoscopically controlled application of accelerated water droplets in association with a high-speed camera system for LAR stimulation site and reflex onset latency identification. Prototype laryngoscopes destined for this method require validation prior to extensive clinical trials. Furthermore, demonstrations using a realistic phantom could increase patient compliance in future clinical settings. For these purposes, a model of the human larynx including vocal fold actuation for LAR simulation was developed in this work. The combination of image processing based on a custom algorithm and individual motorization of each vocal fold enables spatio-temporal droplet impact detection and controlled vocal fold adduction. To simulate different LAR pathologies, the current implementation allows to individually adjust the reflex onset latency of the ipsi- and contralateral vocal fold with respect to the automatically detected impact location of the droplet as well as the maximum adduction angle of each vocal fold. An experimental study of the temporal offset between desired and observed LAR onset latency due to image processing was performed for three average droplet masses based on highspeed recordings of the phantom. Median offsets of 100, 120 and 128 ms were found (n=16). This offset most likely has a multifactorial cause (image processing delay, inertia of the mechanical components, droplet motion). The observed offset increased with increasing droplet mass, as fluid oscillations after impact may have been detected as motion. In future work, alternative methods for droplet impact detection could be explored and the observed offset could be used for compensation of this undesirable delay.
AB - The laryngeal adductor reflex (LAR) is an important protective function of the larynx to prevent aspiration and potentially fatal aspiration pneumonia by rapidly closing the glottis. Recently, a novel method for targeted stimulation and evaluation of the LAR has been proposed to enable non-invasive and reproducible LAR performance grading and to extend the understanding of this reflexive mechanism. The method relies on the laryngoscopically controlled application of accelerated water droplets in association with a high-speed camera system for LAR stimulation site and reflex onset latency identification. Prototype laryngoscopes destined for this method require validation prior to extensive clinical trials. Furthermore, demonstrations using a realistic phantom could increase patient compliance in future clinical settings. For these purposes, a model of the human larynx including vocal fold actuation for LAR simulation was developed in this work. The combination of image processing based on a custom algorithm and individual motorization of each vocal fold enables spatio-temporal droplet impact detection and controlled vocal fold adduction. To simulate different LAR pathologies, the current implementation allows to individually adjust the reflex onset latency of the ipsi- and contralateral vocal fold with respect to the automatically detected impact location of the droplet as well as the maximum adduction angle of each vocal fold. An experimental study of the temporal offset between desired and observed LAR onset latency due to image processing was performed for three average droplet masses based on highspeed recordings of the phantom. Median offsets of 100, 120 and 128 ms were found (n=16). This offset most likely has a multifactorial cause (image processing delay, inertia of the mechanical components, droplet motion). The observed offset increased with increasing droplet mass, as fluid oscillations after impact may have been detected as motion. In future work, alternative methods for droplet impact detection could be explored and the observed offset could be used for compensation of this undesirable delay.
KW - anatomical model
KW - Laryngeal adductor reflex
KW - laryngoscope development
KW - MIT-LAR
UR - http://www.scopus.com/inward/record.url?scp=85072638748&partnerID=8YFLogxK
U2 - 10.1515/cdbme-2019-0035
DO - 10.1515/cdbme-2019-0035
M3 - Article
AN - SCOPUS:85072638748
VL - 5
SP - 137
EP - 140
JO - Current Directions in Biomedical Engineering
JF - Current Directions in Biomedical Engineering
IS - 1
ER -