Alteration of subsurface basaltic rocks and glasses: implications of environmental, chemical and structural properties on Fe mobilization

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Marius Stranghöner

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
  • Harald Behrens, Betreuer*in
Datum der Verleihung des Grades7 Aug. 2019
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2019

Abstract

Die Verwitterung basaltischer Gesteine und Gläser spielt eine Schlüsselrolle für den Transport und den geochemischen Kreislauf der Elemente zwischen Lithosphäre und Hydrosphäre. Trotz der großen Anzahl an wissenschaftlicher Literatur, die sich mit den komplexen Mechanismen der Basaltverwitterung und ihrer Bedeutung für biotische und abiotische Prozesse befasst bleiben einige Fragen offen. Im Zuge dieser Dissertation wird die Bedeutung vulkanischer Inseln für eine potentiell hohe Freisetzung von gelöstem Fe in das Oberflächenwasser der Ozeane aufgezeigt. Weiterhin wird gezeigt, dass die mikrobielle Aktivität unter bestimmten Umgebungs- und Substratbedingungen erheblich zur Auflösung von basaltischen Gesteinen und Gläsern beiträgt. Dies legt einen starken Zusammenhang zwischen dem Fe Redoxzustand und der thermischen Vorgeschichte von Basaltgläsern mit ihrem Auflösungsverhalten nahe. Vulkaninseln bestehen zum großen Teil aus frischen, sehr reaktiven basaltischen Gesteinen und Gläsern die sie in Kombination mit ihrer exponierten Lage und den damit verbundenen hohen Verwitterungsraten zu einer Lokalität für eine erhöhte Freisetzung von gelöstem Fe in das umgebende Oberflächenwasser der Ozeane machen. Basierend auf einer Fallstudie an der Insel Hawaii wurden unterschiedlich stark verwitterte Basaltgesteine des HSDP2 ICDP Bohrkerns im Hinblick auf Fe-haltige Festphasen und die potentielle Fe Freisetzung charakterisiert. Es wird gezeigt, dass die Alteration sekundärer Fe-haltiger Festphasen in Basaltgesteinen aus dem Untergrund von Hawaii durch Adsorption von gelöstem Si und anderen anionischen Spezies unterdrückt wird und dadurch ihre hohe Reaktivität gegenüber der Auflösung erhalten wird. Basierend auf dieser Beobachtung wird eine erhöhte Freisetzung von löslichem Fe aus Untergrundgesteinen von Hawaii und potentiell auch anderen vulkanischen Inseln erwartet, wodurch lokal die Primärproduktivität in Oberflächenwassern der Ozeane angetrieben wird. Die mikrobielle Alteration und Fe Mobilisierung von HSDP2 Basaltgesteinen wurde unter Verwendung eines einzelnen Stammes des Bakteriums Burkholderia fungorum als Modellorganismus untersucht. Es wurde gezeigt, dass Nährstoffmangel und die Anhaftung von mikrobiellen Zellen auf Basaltglasoberflächen die Auflösung fördern. Weiterhin zeigten gequenchte Basaltgläser eine stärkere Auflösung während der mikrobiellen Alteration. Weiterführende Untersuchungen zum Einfluss der thermischen Vorgeschichte auf die Auflösung von Basaltgläsern zeigten, dass organische Liganden speziell die Auflösung von gequenchten Basaltgläsern im Vergleich zu getemperten Gläsern der gleichen Zusammensetzung verstärken können. Es wurde ferner gezeigt, dass die Auflösung von Basaltgläsern durch den Fe Redoxzustand beeinflusst wird und mit zunehmendem Fe(III) Gehalt zunimmt. Diese Ergebnisse ermöglichen ein besseres Verständnis des Zusammenhangs zwischen der Zusammensetzung / Struktur von Basaltgläsern und ihrem Auflösungsverhalten unter bestimmten (biotischen und abiotischen) Umgebungsbedingungen.

Zitieren

Alteration of subsurface basaltic rocks and glasses: implications of environmental, chemical and structural properties on Fe mobilization. / Stranghöner, Marius.
Hannover, 2019. 113 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Download
@phdthesis{ff33625ea2b64e3ca7b82485a2be6da4,
title = "Alteration of subsurface basaltic rocks and glasses: implications of environmental, chemical and structural properties on Fe mobilization",
abstract = "Weathering of basaltic rocks and glasses plays a key role for the transport and geochemical cycling of elements between lithosphere and hydrosphere. Despite the vast number of scientific literature devoted to shed light on the complex mechanisms governing the alteration of silicate rocks and glasses and their significance for biotic and abiotic processes, some questions still remain unanswered. Within this dissertation the importance of volcanic islands for a potential high release of soluble Fe to ocean surface water is highlighted. It is furthermore demonstrated that microbial activity significantly contributes to the dissolution of basaltic rocks and glasses under certain environmental and substrate conditions and a strong relationship between the Fe redox state and thermal history of basaltic glasses and their dissolution behavior is emphasized. The abundance of fresh and highly reactive rocks and glasses on volcanic islands together with their exposed location and high weathering rates make them candidates for increased supply of soluble Fe to surrounding ocean surface waters. Based on a case study on the island of Hawaii differentially altered subsurface basaltic rocks of the HSDP2 ICDP drill core were characterized with respect to Fe containing solid phases and their potential Fe release. It is shown that aging of secondary Fe solid phases in subsurface basaltic rocks of Hawaii is suppressed by adsorption of dissolved Si and other anionic species preserving their high reactivity towards dissolution. Based on this observation a high release of soluble Fe from subsurface rocks of Hawaii and potentially also from other volcanic islands is expected and thought to locally impact on the primary productivity in ocean surface waters. The microbial alteration and Fe mobilization from the HSDP2 basaltic rocks was investigated using a single strain of Burkholderia fungorum as a model organism. Nutrient deficiency and attachment of microbial cells on basaltic glass surfaces promoted the microbial mediated dissolution. Moreover, quenched basaltic glasses showed increased dissolution during microbial alteration. Further investigations into the effect of thermal history on dissolution of basaltic glasses revealed that organic ligands are able to enhance in particular the dissolution of quenched basaltic glasses relative to annealed glasses of the same composition. Furthermore, it is shown that dissolution of basaltic glasses is affected by the Fe redox state and increases with increasing Fe(III) content. These findings allow for a better understanding of the relationship between the composition / structure of basaltic glasses and their dissolution behavior under certain (biotic and abiotic) environmental conditions.",
author = "Marius Strangh{\"o}ner",
year = "2019",
doi = "10.15488/5156",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Alteration of subsurface basaltic rocks and glasses

T2 - implications of environmental, chemical and structural properties on Fe mobilization

AU - Stranghöner, Marius

PY - 2019

Y1 - 2019

N2 - Weathering of basaltic rocks and glasses plays a key role for the transport and geochemical cycling of elements between lithosphere and hydrosphere. Despite the vast number of scientific literature devoted to shed light on the complex mechanisms governing the alteration of silicate rocks and glasses and their significance for biotic and abiotic processes, some questions still remain unanswered. Within this dissertation the importance of volcanic islands for a potential high release of soluble Fe to ocean surface water is highlighted. It is furthermore demonstrated that microbial activity significantly contributes to the dissolution of basaltic rocks and glasses under certain environmental and substrate conditions and a strong relationship between the Fe redox state and thermal history of basaltic glasses and their dissolution behavior is emphasized. The abundance of fresh and highly reactive rocks and glasses on volcanic islands together with their exposed location and high weathering rates make them candidates for increased supply of soluble Fe to surrounding ocean surface waters. Based on a case study on the island of Hawaii differentially altered subsurface basaltic rocks of the HSDP2 ICDP drill core were characterized with respect to Fe containing solid phases and their potential Fe release. It is shown that aging of secondary Fe solid phases in subsurface basaltic rocks of Hawaii is suppressed by adsorption of dissolved Si and other anionic species preserving their high reactivity towards dissolution. Based on this observation a high release of soluble Fe from subsurface rocks of Hawaii and potentially also from other volcanic islands is expected and thought to locally impact on the primary productivity in ocean surface waters. The microbial alteration and Fe mobilization from the HSDP2 basaltic rocks was investigated using a single strain of Burkholderia fungorum as a model organism. Nutrient deficiency and attachment of microbial cells on basaltic glass surfaces promoted the microbial mediated dissolution. Moreover, quenched basaltic glasses showed increased dissolution during microbial alteration. Further investigations into the effect of thermal history on dissolution of basaltic glasses revealed that organic ligands are able to enhance in particular the dissolution of quenched basaltic glasses relative to annealed glasses of the same composition. Furthermore, it is shown that dissolution of basaltic glasses is affected by the Fe redox state and increases with increasing Fe(III) content. These findings allow for a better understanding of the relationship between the composition / structure of basaltic glasses and their dissolution behavior under certain (biotic and abiotic) environmental conditions.

AB - Weathering of basaltic rocks and glasses plays a key role for the transport and geochemical cycling of elements between lithosphere and hydrosphere. Despite the vast number of scientific literature devoted to shed light on the complex mechanisms governing the alteration of silicate rocks and glasses and their significance for biotic and abiotic processes, some questions still remain unanswered. Within this dissertation the importance of volcanic islands for a potential high release of soluble Fe to ocean surface water is highlighted. It is furthermore demonstrated that microbial activity significantly contributes to the dissolution of basaltic rocks and glasses under certain environmental and substrate conditions and a strong relationship between the Fe redox state and thermal history of basaltic glasses and their dissolution behavior is emphasized. The abundance of fresh and highly reactive rocks and glasses on volcanic islands together with their exposed location and high weathering rates make them candidates for increased supply of soluble Fe to surrounding ocean surface waters. Based on a case study on the island of Hawaii differentially altered subsurface basaltic rocks of the HSDP2 ICDP drill core were characterized with respect to Fe containing solid phases and their potential Fe release. It is shown that aging of secondary Fe solid phases in subsurface basaltic rocks of Hawaii is suppressed by adsorption of dissolved Si and other anionic species preserving their high reactivity towards dissolution. Based on this observation a high release of soluble Fe from subsurface rocks of Hawaii and potentially also from other volcanic islands is expected and thought to locally impact on the primary productivity in ocean surface waters. The microbial alteration and Fe mobilization from the HSDP2 basaltic rocks was investigated using a single strain of Burkholderia fungorum as a model organism. Nutrient deficiency and attachment of microbial cells on basaltic glass surfaces promoted the microbial mediated dissolution. Moreover, quenched basaltic glasses showed increased dissolution during microbial alteration. Further investigations into the effect of thermal history on dissolution of basaltic glasses revealed that organic ligands are able to enhance in particular the dissolution of quenched basaltic glasses relative to annealed glasses of the same composition. Furthermore, it is shown that dissolution of basaltic glasses is affected by the Fe redox state and increases with increasing Fe(III) content. These findings allow for a better understanding of the relationship between the composition / structure of basaltic glasses and their dissolution behavior under certain (biotic and abiotic) environmental conditions.

U2 - 10.15488/5156

DO - 10.15488/5156

M3 - Doctoral thesis

CY - Hannover

ER -