All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • The LIGO Scientific Collaboration
  • C. Affeldt
  • M. Carlassara
  • K. Danzmann
  • A. Heidt
  • M. Heurs
  • A. Hreibi
  • J. Junker
  • N. Knust
  • H. Lück
  • M. Matiushechkina
  • M. Nery
  • B. W. Schulte
  • D. Wilken
  • B. Willke
  • D. S. Wu
  • Fabio Bergamin
  • Aparna Bisht
  • Nina Bode
  • Phillip Booker
  • Marc Brinkmann
  • N. Gohlke
  • J. Heinze
  • S. Hochheim
  • Wolfgang Kastaun
  • R. Kirchhoff
  • Philip Koch
  • N. Koper
  • Volker Kringel
  • N. V. Krishnendu
  • G. Kuehn
  • S. Leavey
  • J. Lehmann
  • James Lough
  • Moritz Mehmet
  • Fabian Meylahn
  • Nikhil Mukund
  • S. L. Nadji
  • F. Ohme
  • M. Schneewind
  • B. F. Schutz
  • Y. Setyawati
  • J. Venneberg
  • J. von Wrangel
  • Michael Weinert
  • F. Wellmann
  • Peter Weßels
  • J. Woehler

Externe Organisationen

  • California Institute of Technology (Caltech)
  • Tokyo Institute of Technology
  • Universita di Salerno
  • Università degli Studi di Napoli Federico II
  • Monash University
  • University of Wisconsin Milwaukee
  • Louisiana State University
  • Australian National University
  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
  • University of Cambridge
  • Friedrich-Schiller-Universität Jena
  • University of Birmingham
  • Northwestern University
  • Instituto Nacional de Pesquisas Espaciais
  • Cardiff University
  • Sezione di Pisa
  • Tata Institute of Fundamental Research (TIFR HYD)
  • National Astronomical Observatory of Japan (NAOJ)
  • Università di Torino
  • Istituto Nazionale di Fisica Nucleare (INFN)
  • Université Claude Bernard Lyon 1
  • University of Tokyo (UTokyo)
  • Universitat de Barcelona (UB)
  • Universite de Savoie
  • Institució Catalana de Recerca i Estudis Avançats (ICREA)
  • Gran Sasso Science Institute
  • University of Strathclyde
  • University of Udine
  • Inter-University Centre for Astronomy and Astrophysics India
  • University of Glasgow
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer102008
FachzeitschriftPhysical Review D
Jahrgang106
Ausgabenummer10
PublikationsstatusVeröffentlicht - 28 Nov. 2022

Abstract

We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from -10-8 to 10-9 Hz/s. No statistically significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ∼1.1×10-25 at 95% confidence level. The minimum upper limit of 1.10×10-25 is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals.

ASJC Scopus Sachgebiete

Zitieren

All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data. / The LIGO Scientific Collaboration; Affeldt, C.; Carlassara, M. et al.
in: Physical Review D, Jahrgang 106, Nr. 10, 102008, 28.11.2022.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

The LIGO Scientific Collaboration, Affeldt, C, Carlassara, M, Danzmann, K, Heidt, A, Heurs, M, Hreibi, A, Junker, J, Knust, N, Lück, H, Matiushechkina, M, Nery, M, Schulte, BW, Wilken, D, Willke, B, Wu, DS, Bergamin, F, Bisht, A, Bode, N, Booker, P, Brinkmann, M, Gohlke, N, Heinze, J, Hochheim, S, Kastaun, W, Kirchhoff, R, Koch, P, Koper, N, Kringel, V, Krishnendu, NV, Kuehn, G, Leavey, S, Lehmann, J, Lough, J, Mehmet, M, Meylahn, F, Mukund, N, Nadji, SL, Ohme, F, Schneewind, M, Schutz, BF, Setyawati, Y, Venneberg, J, von Wrangel, J, Weinert, M, Wellmann, F, Weßels, P & Woehler, J 2022, 'All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data', Physical Review D, Jg. 106, Nr. 10, 102008. https://doi.org/10.1103/PhysRevD.106.102008
The LIGO Scientific Collaboration, Affeldt, C., Carlassara, M., Danzmann, K., Heidt, A., Heurs, M., Hreibi, A., Junker, J., Knust, N., Lück, H., Matiushechkina, M., Nery, M., Schulte, B. W., Wilken, D., Willke, B., Wu, D. S., Bergamin, F., Bisht, A., Bode, N., ... Woehler, J. (2022). All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data. Physical Review D, 106(10), Artikel 102008. https://doi.org/10.1103/PhysRevD.106.102008
The LIGO Scientific Collaboration, Affeldt C, Carlassara M, Danzmann K, Heidt A, Heurs M et al. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data. Physical Review D. 2022 Nov 28;106(10):102008. doi: 10.1103/PhysRevD.106.102008
The LIGO Scientific Collaboration ; Affeldt, C. ; Carlassara, M. et al. / All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data. in: Physical Review D. 2022 ; Jahrgang 106, Nr. 10.
Download
@article{0ddf5b5ec3aa492dac7fddba09ba9271,
title = "All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data",
abstract = "We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from -10-8 to 10-9 Hz/s. No statistically significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ∼1.1×10-25 at 95% confidence level. The minimum upper limit of 1.10×10-25 is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals.",
author = "{The LIGO Scientific Collaboration} and R. Abbott and H. Abe and F. Acernese and K. Ackley and N. Adhikari and Adhikari, {R. X.} and Adkins, {V. K.} and Adya, {V. B.} and C. Affeldt and D. Agarwal and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and T. Akutsu and S. Albanesi and Alfaidi, {R. A.} and A. Allocca and Altin, {P. A.} and A. Amato and C. Anand and S. Anand and A. Ananyeva and Anderson, {S. B.} and Anderson, {W. G.} and M. Ando and T. Andrade and N. Andres and M. Andr{\'e}s-Carcasona and T. Andri{\'c} and Angelova, {S. V.} and S. Ansoldi and S. Bose and M. Carlassara and K. Danzmann and A. Heidt and M. Heurs and A. Hreibi and J. Junker and N. Knust and H. L{\"u}ck and M. Matiushechkina and M. Nery and Schulte, {B. W.} and D. Wilken and B. Willke and Wu, {D. S.} and Fabio Bergamin and Aparna Bisht and Nina Bode and Phillip Booker and Marc Brinkmann and N. Gohlke and J. Heinze and S. Hochheim and Wolfgang Kastaun and R. Kirchhoff and Philip Koch and N. Koper and Volker Kringel and Krishnendu, {N. V.} and G. Kuehn and S. Leavey and J. Lehmann and James Lough and Moritz Mehmet and Fabian Meylahn and Nikhil Mukund and Nadji, {S. L.} and F. Ohme and M. Schneewind and Schutz, {B. F.} and Y. Setyawati and J. Venneberg and {von Wrangel}, J. and Michael Weinert and F. Wellmann and Peter We{\ss}els and J. Woehler",
note = "Funding Information: This material is based upon work supported by NSF{\textquoteright}s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science and Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigaci{\'o}n (AEI), the Spanish Ministerio de Ciencia e Innovaci{\'o}n and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and the Direcci{\'o} General de Pol{\'i}tica Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d{\textquoteright}Innovaci{\'o}, Universitats, Ci{\`e}ncia i Societat Digital de la Generalitat Valenciana, and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union—European Regional Development Fund; Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Social Funds (ESF), the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concert{\'e}es (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris {\^I}le-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, CNRS, and PL-Grid for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF), Computing Infrastructure Project of KISTI-GSDC, Korea Astronomy and Space Science Institute (KASI), and Ministry of Science and ICT (MSIT) in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK. ",
year = "2022",
month = nov,
day = "28",
doi = "10.1103/PhysRevD.106.102008",
language = "English",
volume = "106",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Institute of Physics",
number = "10",

}

Download

TY - JOUR

T1 - All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data

AU - The LIGO Scientific Collaboration

AU - Abbott, R.

AU - Abe, H.

AU - Acernese, F.

AU - Ackley, K.

AU - Adhikari, N.

AU - Adhikari, R. X.

AU - Adkins, V. K.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agarwal, D.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Akutsu, T.

AU - Albanesi, S.

AU - Alfaidi, R. A.

AU - Allocca, A.

AU - Altin, P. A.

AU - Amato, A.

AU - Anand, C.

AU - Anand, S.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Ando, M.

AU - Andrade, T.

AU - Andres, N.

AU - Andrés-Carcasona, M.

AU - Andrić, T.

AU - Angelova, S. V.

AU - Ansoldi, S.

AU - Bose, S.

AU - Carlassara, M.

AU - Danzmann, K.

AU - Heidt, A.

AU - Heurs, M.

AU - Hreibi, A.

AU - Junker, J.

AU - Knust, N.

AU - Lück, H.

AU - Matiushechkina, M.

AU - Nery, M.

AU - Schulte, B. W.

AU - Wilken, D.

AU - Willke, B.

AU - Wu, D. S.

AU - Bergamin, Fabio

AU - Bisht, Aparna

AU - Bode, Nina

AU - Booker, Phillip

AU - Brinkmann, Marc

AU - Gohlke, N.

AU - Heinze, J.

AU - Hochheim, S.

AU - Kastaun, Wolfgang

AU - Kirchhoff, R.

AU - Koch, Philip

AU - Koper, N.

AU - Kringel, Volker

AU - Krishnendu, N. V.

AU - Kuehn, G.

AU - Leavey, S.

AU - Lehmann, J.

AU - Lough, James

AU - Mehmet, Moritz

AU - Meylahn, Fabian

AU - Mukund, Nikhil

AU - Nadji, S. L.

AU - Ohme, F.

AU - Schneewind, M.

AU - Schutz, B. F.

AU - Setyawati, Y.

AU - Venneberg, J.

AU - von Wrangel, J.

AU - Weinert, Michael

AU - Wellmann, F.

AU - Weßels, Peter

AU - Woehler, J.

N1 - Funding Information: This material is based upon work supported by NSF’s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research (NWO), for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science and Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and the Direcció General de Política Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana, and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union—European Regional Development Fund; Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Social Funds (ESF), the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, CNRS, and PL-Grid for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF), Computing Infrastructure Project of KISTI-GSDC, Korea Astronomy and Space Science Institute (KASI), and Ministry of Science and ICT (MSIT) in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK.

PY - 2022/11/28

Y1 - 2022/11/28

N2 - We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from -10-8 to 10-9 Hz/s. No statistically significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ∼1.1×10-25 at 95% confidence level. The minimum upper limit of 1.10×10-25 is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals.

AB - We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from -10-8 to 10-9 Hz/s. No statistically significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ∼1.1×10-25 at 95% confidence level. The minimum upper limit of 1.10×10-25 is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals.

UR - http://www.scopus.com/inward/record.url?scp=85144215323&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.106.102008

DO - 10.1103/PhysRevD.106.102008

M3 - Article

AN - SCOPUS:85144215323

VL - 106

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 10

M1 - 102008

ER -

Von denselben Autoren