Algebraic cycles on hyper-Kähler varieties of generalized Kummer type

Publikation: Arbeitspapier/PreprintPreprint

Autoren

  • Salvatore Floccari
  • Mauro Varesco

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 9 Aug. 2023

Abstract

We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic.

Zitieren

Algebraic cycles on hyper-Kähler varieties of generalized Kummer type. / Floccari, Salvatore; Varesco, Mauro.
2023.

Publikation: Arbeitspapier/PreprintPreprint

Floccari S, Varesco M. Algebraic cycles on hyper-Kähler varieties of generalized Kummer type. 2023 Aug 9. Epub 2023 Aug 9. doi: 10.48550/arXiv.2308.04865
Floccari, Salvatore ; Varesco, Mauro. / Algebraic cycles on hyper-Kähler varieties of generalized Kummer type. 2023.
Download
@techreport{f4917474bcd7479ba4a88f2b29c0e340,
title = "Algebraic cycles on hyper-K{\"a}hler varieties of generalized Kummer type",
abstract = " We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\{"}ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic. ",
keywords = "math.AG",
author = "Salvatore Floccari and Mauro Varesco",
note = "10 pages, comments welcome",
year = "2023",
month = aug,
day = "9",
doi = "10.48550/arXiv.2308.04865",
language = "English",
type = "WorkingPaper",

}

Download

TY - UNPB

T1 - Algebraic cycles on hyper-Kähler varieties of generalized Kummer type

AU - Floccari, Salvatore

AU - Varesco, Mauro

N1 - 10 pages, comments welcome

PY - 2023/8/9

Y1 - 2023/8/9

N2 - We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic.

AB - We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic.

KW - math.AG

U2 - 10.48550/arXiv.2308.04865

DO - 10.48550/arXiv.2308.04865

M3 - Preprint

BT - Algebraic cycles on hyper-Kähler varieties of generalized Kummer type

ER -