Advanced Filler Network Characterization in Rubber

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Syed Imran Hussain Syed Javaid Iqbal
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades12 Mai 2021
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2021

Abstract

Die vorliegende Arbeit hat das Ziel, innovative Methoden zur Charakterisierung von gefüllten Kautschukmischungen einzuführen. Füllstoffe, wie Ruß, werden in Kautschuk eingesetzt, um seine physikalischen Eigenschaften zu verstärken. Mit einer ausreichenden Menge an Ruß wird ein perkolierendes Netzwerk erzeugt, das das Volumen der Kautschukmischung durchdringt. Diese Erscheinung verstärkt nicht nur das mechanische Materialverhalten, sondern führt zu einer komplexeren mechanischen Reaktion. Eine weitere Verstärkung ist durch den Einsatz netzwerkbildender Harze möglich, z.B. von Novolaken, Phenolharzen mit einem Formaldehyd-Phenol-Verhältnis kleiner eins. Auf der Basis von systematischen Studien wird ein synergistisches Verhalten der beiden verstärkenden Materialien infolge ihrer physikalischen und chemischen Wechselwirkung beobachtet. Das Verstärkungsharz verändert die Aktivität der Füllstoffoberfläche und erzeugt damit ein kompakteres Füllstoffnetzwerk. Dies führt zu einer reduzierten Perkolationsschwelle sowie zu einer zusätzlich höheren Verstärkung. Diese Schlussfolgerung wurde aus Messungen mit verschiedenen thermomechanischen Verfahren abgeleitet, wie der anisothermen Spannungsrelaxation (TSSR) und der dynamisch-mechanischen Analyse (DMA). Die Ergebnisse wurden auch mit anspruchsvollen mikroskopischen Techniken validiert, wie der Rasterkraftmikroskopie (AFM) und Transmissionselektronenmikroskopie (TEM). Eine direkte Folge des Füllstoffnetzwerks ist die Entstehung eines dehnungsabhängigen Verhaltens, das als dynamischer oder quasi-statischer Erweichungseffekt beobachtet und jeweils als Payne- oder Mullins-Effekt bezeichnet wird. Bei der dynamisch-mechanischen Analyse (DMA) von Kautschukmischungen wird häufig eine Linearität der Antwort in Bezug auf das angelegte Verformungssignal angenommen, da die Stärke der ersten Harmonischen viel höher ist als die der nachfolgenden Harmonischen. Es gibt jedoch wertvolle Informationen in den höheren Harmonischen, die verwendet werden könnten, um die Materialeigenschaften weiter zu charakterisieren. Ein solcher Ansatz ist die LAOS-Technik (engl. Large Amplitude Oscillatory Shear), mit der die Harmonischen als Funktion der Dehnung analysiert werden. Während einige Studien bereits zum Verständnis dieses dehnungsabhängigen Phänomens beigetragen haben, wurde weniger Wert auf die Nichtlinearität im Frequenzbereich gelegt. Unter Verwendung einer resonanzbasierten Hochfrequenz-DMA wurden erstmals in der Kautschuktechnologie Nichtlinearitäten im Frequenzraum durch Beobachtung von superharmonischen Resonanzen festgestellt. Zwei unterschiedliche Typen von Nichtlinearitäten wurden beobachtet, die polymerinduzierte und die füllstoffinduzierte Nichtlinearität. Die neue Methode auf der Basis der superharmonischen Resonanz wurde zur Charakterisierung des Füllstoffnetzwerkes durch Bewertung der Mikrodispersion von Ruß und dessen Wechselwirkung mit verstärkenden Harzen erfolgreich eingesetzt.

Zitieren

Advanced Filler Network Characterization in Rubber. / Syed Javaid Iqbal, Syed Imran Hussain.
Hannover, 2021. 65 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Syed Javaid Iqbal, SIH 2021, 'Advanced Filler Network Characterization in Rubber', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/11028
Syed Javaid Iqbal, S. I. H. (2021). Advanced Filler Network Characterization in Rubber. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/11028
Syed Javaid Iqbal SIH. Advanced Filler Network Characterization in Rubber. Hannover, 2021. 65 S. doi: 10.15488/11028
Syed Javaid Iqbal, Syed Imran Hussain. / Advanced Filler Network Characterization in Rubber. Hannover, 2021. 65 S.
Download
@phdthesis{610b8fc41b2c436f860956de3e9351ff,
title = "Advanced Filler Network Characterization in Rubber",
abstract = "The present work is aimed at introducing new characterization techniques in filled rubber compounds. Rubber fillers such as carbon black are often used to enhance the physical properties of rubber compounds. With a sufficient amount of carbon black, a percolated filler network is formed, spanning the volume of the rubber compound. This phenomenon not only significantly improves the mechanical material behaviour, but also introduces a more complex mechanical response. Further enhancement is possible with the addition of reinforcing resins such as Novolaks, phenol–formaldehyde resins with a formaldehyde-to-phenol molar ratio of less than one. Based on the systematic studies performed, the two reinforcing materials are observed to exhibit synergistic behaviour resulting from their physical and chemical interaction. The reinforcing resin modifies the activity of the filler surface creating a more compact filler network. This leads to a lower filler network percolation threshold as well as increasing the reinforcing behaviour. This conclusion was derived from various thermo-mechanical measurements such as temperature stress scanning relaxation (TSSR) and dynamic mechanical analysis (DMA). The findings were also validated with advanced microscopical techniques such as atomic force microscopy (AFM) and transmission electron microscopy (TEM). A direct consequence of the filler network is a strain dependent behaviour such as the dynamic and quasi-static strain dependent softening effects known as Payne and Mullins effects, respectively. Within the conventional dynamic mechanical analysis (DMA) of rubber compounds, the mechanical response signal is often assumed to be rheologically linear (sinusoidal function) since in Fourier space, the first harmonic is more pronounced than the subsequent higher harmonics. However, valuable information contained in the higher harmonics can be utilised in order to further characterise the compound properties. One such approach is the large amplitude oscillatory shear (LAOS) technique which analyses the harmonics as a function of large strain deformation. While several studies have contributed to the understanding of this strain dependent nonlinearity, less emphasis was placed on the nonlinearity of the frequency domain. Utilising a resonance-based high frequency DMA, nonlinearities in the frequency domain were established by the observation of the superharmonic resonance, for the first time in rubber technology. Two distinct nonlinearities were observed, polymer induced nonlinearity and filler induced nonlinearity. The new method based on the superharmonic resonance has been successfully applied to characterise the filler network through the evaluation of the microdispersion of carbon black and its interaction with reinforcing resins.",
author = "{Syed Javaid Iqbal}, {Syed Imran Hussain}",
note = "Doctoral thesis",
year = "2021",
doi = "10.15488/11028",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Advanced Filler Network Characterization in Rubber

AU - Syed Javaid Iqbal, Syed Imran Hussain

N1 - Doctoral thesis

PY - 2021

Y1 - 2021

N2 - The present work is aimed at introducing new characterization techniques in filled rubber compounds. Rubber fillers such as carbon black are often used to enhance the physical properties of rubber compounds. With a sufficient amount of carbon black, a percolated filler network is formed, spanning the volume of the rubber compound. This phenomenon not only significantly improves the mechanical material behaviour, but also introduces a more complex mechanical response. Further enhancement is possible with the addition of reinforcing resins such as Novolaks, phenol–formaldehyde resins with a formaldehyde-to-phenol molar ratio of less than one. Based on the systematic studies performed, the two reinforcing materials are observed to exhibit synergistic behaviour resulting from their physical and chemical interaction. The reinforcing resin modifies the activity of the filler surface creating a more compact filler network. This leads to a lower filler network percolation threshold as well as increasing the reinforcing behaviour. This conclusion was derived from various thermo-mechanical measurements such as temperature stress scanning relaxation (TSSR) and dynamic mechanical analysis (DMA). The findings were also validated with advanced microscopical techniques such as atomic force microscopy (AFM) and transmission electron microscopy (TEM). A direct consequence of the filler network is a strain dependent behaviour such as the dynamic and quasi-static strain dependent softening effects known as Payne and Mullins effects, respectively. Within the conventional dynamic mechanical analysis (DMA) of rubber compounds, the mechanical response signal is often assumed to be rheologically linear (sinusoidal function) since in Fourier space, the first harmonic is more pronounced than the subsequent higher harmonics. However, valuable information contained in the higher harmonics can be utilised in order to further characterise the compound properties. One such approach is the large amplitude oscillatory shear (LAOS) technique which analyses the harmonics as a function of large strain deformation. While several studies have contributed to the understanding of this strain dependent nonlinearity, less emphasis was placed on the nonlinearity of the frequency domain. Utilising a resonance-based high frequency DMA, nonlinearities in the frequency domain were established by the observation of the superharmonic resonance, for the first time in rubber technology. Two distinct nonlinearities were observed, polymer induced nonlinearity and filler induced nonlinearity. The new method based on the superharmonic resonance has been successfully applied to characterise the filler network through the evaluation of the microdispersion of carbon black and its interaction with reinforcing resins.

AB - The present work is aimed at introducing new characterization techniques in filled rubber compounds. Rubber fillers such as carbon black are often used to enhance the physical properties of rubber compounds. With a sufficient amount of carbon black, a percolated filler network is formed, spanning the volume of the rubber compound. This phenomenon not only significantly improves the mechanical material behaviour, but also introduces a more complex mechanical response. Further enhancement is possible with the addition of reinforcing resins such as Novolaks, phenol–formaldehyde resins with a formaldehyde-to-phenol molar ratio of less than one. Based on the systematic studies performed, the two reinforcing materials are observed to exhibit synergistic behaviour resulting from their physical and chemical interaction. The reinforcing resin modifies the activity of the filler surface creating a more compact filler network. This leads to a lower filler network percolation threshold as well as increasing the reinforcing behaviour. This conclusion was derived from various thermo-mechanical measurements such as temperature stress scanning relaxation (TSSR) and dynamic mechanical analysis (DMA). The findings were also validated with advanced microscopical techniques such as atomic force microscopy (AFM) and transmission electron microscopy (TEM). A direct consequence of the filler network is a strain dependent behaviour such as the dynamic and quasi-static strain dependent softening effects known as Payne and Mullins effects, respectively. Within the conventional dynamic mechanical analysis (DMA) of rubber compounds, the mechanical response signal is often assumed to be rheologically linear (sinusoidal function) since in Fourier space, the first harmonic is more pronounced than the subsequent higher harmonics. However, valuable information contained in the higher harmonics can be utilised in order to further characterise the compound properties. One such approach is the large amplitude oscillatory shear (LAOS) technique which analyses the harmonics as a function of large strain deformation. While several studies have contributed to the understanding of this strain dependent nonlinearity, less emphasis was placed on the nonlinearity of the frequency domain. Utilising a resonance-based high frequency DMA, nonlinearities in the frequency domain were established by the observation of the superharmonic resonance, for the first time in rubber technology. Two distinct nonlinearities were observed, polymer induced nonlinearity and filler induced nonlinearity. The new method based on the superharmonic resonance has been successfully applied to characterise the filler network through the evaluation of the microdispersion of carbon black and its interaction with reinforcing resins.

U2 - 10.15488/11028

DO - 10.15488/11028

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren