Details
Originalsprache | Deutsch |
---|---|
Qualifikation | Doctor rerum naturalium |
Gradverleihende Hochschule | |
Betreut von |
|
Datum der Verleihung des Grades | 29 Jan. 2019 |
Erscheinungsort | Hannover |
Publikationsstatus | Veröffentlicht - 2019 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Hannover, 2019. 87 S.
Publikation: Qualifikations-/Studienabschlussarbeit › Dissertation
}
TY - BOOK
T1 - Additive Fertigung in der Biotechnologie und Pharmaindustrie
AU - Raddatz, Lukas
PY - 2019
Y1 - 2019
N2 - Die additive Fertigung (3D-Druck) wurde in den frühen 1980er Jahren entwickelt und gewann seitdem durch stetige Verbesserungen an Bedeutung. Gebiete wie die Biotechnologie, die Pharma- und die Chemieindustrie, wo besonders hohe Anforderungen an Materialien und Produkte gestellt werden, können daher erschlossen werden. Anlässlich dieses Trends wurde die vorliegende Dissertation erstellt, um Anwendungsbereiche und Entwicklungsfelder in den Bereichen Biotechnologie und Pharmaindustrie zu evaluieren, Möglichkeiten und Grenzen des 3D-Drucks aufzuzeigen und einen Beitrag zu den aktuellen Entwicklungen der additiven Fertigung in Form verschiedener Produktentwicklungen und korrespondierender Studien beizusteuern. Im ersten Teil dieser Arbeit wird ein additiv gefertigter und funktionaler Kolbendeckel präsentiert, welcher zur kontinuierlichen und minimal-invasiven Prozessführung von (Fed-)Batch Prozessen im Schüttelkolbenmaßstab dient. Nach Design und Fertigung wurde er erfolgreich in einer Anwendungsstudie getestet. Verschiedene additive Fertigungsmethoden sind zentraler Gegenstand der Studie und werden neben dem Fallbeispiel als Möglichkeit zur in-house Produktion von Verbrauchsmaterialien (Kamm für gelelektrophoretische Analysen) diskutiert. Der zweite Teil beschäftigt sich mit Testung und Charakterisierung von additiv verarbeiteten Biopolymeren zur Implantatentwicklung. Auf Grundlage von bildgebenden Verfahren wie MRT oder CT können die digitalen Blaupausen zur Erstellung der Implantate gewonnen werden und mittels 3D-Druck in hoher Auflösung und dem notwendigen Material gefertigt werden. Die vorliegende Arbeit betrachtet verschiedene resorbierbare Materialien hinsichtlich ihrer Anwendbarkeit als Rohstoff für additiv gefertigte Implantate und evaluiert das Zellverhalten (Viabilität, Proliferation, Adhärenz, Differenzierung) verschiedener Zelltypen in Kontakt mit den Materialien. Darüber hinaus wird das Abbauverhalten der biodegradierbaren Materialien unter simulierten in-vivo Bedingungen beschrieben. Der dritte Teil der Arbeit widmet sich dem 3D-Bioprinting. Mit dieser Methode können individuell und präzise 3D-Zellstrukturen erstellt werden. Hier wurde eine neuartige Methode für extrusionsbasiertes Natriumalginat-3D-Bioprinting entwickelt, bei der der Gelationsprozess des Alginats mithilfe einer vernebelten CaCl2-Lösung induziert wird. Gegenüber bisherigen Methoden können die Inkubationsdauer und Konzentration des potentiell toxischen CaCl2 verringert werden. Über die in den einzelnen Kapiteln präsentierten Ergebnisse hinaus, zeigen die Arbeiten in Summe, welche Möglichkeiten verschiedene additive Fertigungsverfahren bieten und wie sie für biotechnologische Anwendungen genutzt werden können.
AB - Die additive Fertigung (3D-Druck) wurde in den frühen 1980er Jahren entwickelt und gewann seitdem durch stetige Verbesserungen an Bedeutung. Gebiete wie die Biotechnologie, die Pharma- und die Chemieindustrie, wo besonders hohe Anforderungen an Materialien und Produkte gestellt werden, können daher erschlossen werden. Anlässlich dieses Trends wurde die vorliegende Dissertation erstellt, um Anwendungsbereiche und Entwicklungsfelder in den Bereichen Biotechnologie und Pharmaindustrie zu evaluieren, Möglichkeiten und Grenzen des 3D-Drucks aufzuzeigen und einen Beitrag zu den aktuellen Entwicklungen der additiven Fertigung in Form verschiedener Produktentwicklungen und korrespondierender Studien beizusteuern. Im ersten Teil dieser Arbeit wird ein additiv gefertigter und funktionaler Kolbendeckel präsentiert, welcher zur kontinuierlichen und minimal-invasiven Prozessführung von (Fed-)Batch Prozessen im Schüttelkolbenmaßstab dient. Nach Design und Fertigung wurde er erfolgreich in einer Anwendungsstudie getestet. Verschiedene additive Fertigungsmethoden sind zentraler Gegenstand der Studie und werden neben dem Fallbeispiel als Möglichkeit zur in-house Produktion von Verbrauchsmaterialien (Kamm für gelelektrophoretische Analysen) diskutiert. Der zweite Teil beschäftigt sich mit Testung und Charakterisierung von additiv verarbeiteten Biopolymeren zur Implantatentwicklung. Auf Grundlage von bildgebenden Verfahren wie MRT oder CT können die digitalen Blaupausen zur Erstellung der Implantate gewonnen werden und mittels 3D-Druck in hoher Auflösung und dem notwendigen Material gefertigt werden. Die vorliegende Arbeit betrachtet verschiedene resorbierbare Materialien hinsichtlich ihrer Anwendbarkeit als Rohstoff für additiv gefertigte Implantate und evaluiert das Zellverhalten (Viabilität, Proliferation, Adhärenz, Differenzierung) verschiedener Zelltypen in Kontakt mit den Materialien. Darüber hinaus wird das Abbauverhalten der biodegradierbaren Materialien unter simulierten in-vivo Bedingungen beschrieben. Der dritte Teil der Arbeit widmet sich dem 3D-Bioprinting. Mit dieser Methode können individuell und präzise 3D-Zellstrukturen erstellt werden. Hier wurde eine neuartige Methode für extrusionsbasiertes Natriumalginat-3D-Bioprinting entwickelt, bei der der Gelationsprozess des Alginats mithilfe einer vernebelten CaCl2-Lösung induziert wird. Gegenüber bisherigen Methoden können die Inkubationsdauer und Konzentration des potentiell toxischen CaCl2 verringert werden. Über die in den einzelnen Kapiteln präsentierten Ergebnisse hinaus, zeigen die Arbeiten in Summe, welche Möglichkeiten verschiedene additive Fertigungsverfahren bieten und wie sie für biotechnologische Anwendungen genutzt werden können.
U2 - 10.15488/4679
DO - 10.15488/4679
M3 - Dissertation
CY - Hannover
ER -