Adaptive Unscented Kalman Filter for Online State, Parameter, and Process Covariance Estimation

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autorschaft

  • Mauro Hernan Riva
  • Matthias Dagen
  • Tobias Ortmaier

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des Sammelwerks2016 American Control Conference, ACC 2016
ErscheinungsortBoston, USA
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten4513-4519
Seitenumfang7
ISBN (elektronisch)9781467386821
PublikationsstatusVeröffentlicht - 28 Juli 2016
Veranstaltung2016 American Control Conference, ACC 2016 - Boston, USA / Vereinigte Staaten
Dauer: 6 Juli 20168 Juli 2016

Publikationsreihe

NameProceedings of the American Control Conference
Band2016-July
ISSN (Print)0743-1619

Abstract

A novel observer for state, parameter and process covariance estimation is presented in this paper. The new observer estimates system states using a Square-Root Unscented Kalman Filter (SRUKF) and by employing the Recursive Prediction-Error (RPE) method, unknown parameters and covariances are identified online. Two experimental applications based on an underactuated planar robot are included to demonstrate the algorithm performance. Additionally, sensitivity models for the SRUKF are derived. Results show that the online process covariance estimation improves the observer convergence and reduces parameter estimation bias.

ASJC Scopus Sachgebiete

Zitieren

Adaptive Unscented Kalman Filter for Online State, Parameter, and Process Covariance Estimation. / Riva, Mauro Hernan; Dagen, Matthias; Ortmaier, Tobias.
2016 American Control Conference, ACC 2016. Boston, USA: Institute of Electrical and Electronics Engineers Inc., 2016. S. 4513-4519 7526063 (Proceedings of the American Control Conference; Band 2016-July).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Riva, MH, Dagen, M & Ortmaier, T 2016, Adaptive Unscented Kalman Filter for Online State, Parameter, and Process Covariance Estimation. in 2016 American Control Conference, ACC 2016., 7526063, Proceedings of the American Control Conference, Bd. 2016-July, Institute of Electrical and Electronics Engineers Inc., Boston, USA, S. 4513-4519, 2016 American Control Conference, ACC 2016, Boston, USA / Vereinigte Staaten, 6 Juli 2016. https://doi.org/10.1109/acc.2016.7526063
Riva, M. H., Dagen, M., & Ortmaier, T. (2016). Adaptive Unscented Kalman Filter for Online State, Parameter, and Process Covariance Estimation. In 2016 American Control Conference, ACC 2016 (S. 4513-4519). Artikel 7526063 (Proceedings of the American Control Conference; Band 2016-July). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/acc.2016.7526063
Riva MH, Dagen M, Ortmaier T. Adaptive Unscented Kalman Filter for Online State, Parameter, and Process Covariance Estimation. in 2016 American Control Conference, ACC 2016. Boston, USA: Institute of Electrical and Electronics Engineers Inc. 2016. S. 4513-4519. 7526063. (Proceedings of the American Control Conference). doi: 10.1109/acc.2016.7526063
Riva, Mauro Hernan ; Dagen, Matthias ; Ortmaier, Tobias. / Adaptive Unscented Kalman Filter for Online State, Parameter, and Process Covariance Estimation. 2016 American Control Conference, ACC 2016. Boston, USA : Institute of Electrical and Electronics Engineers Inc., 2016. S. 4513-4519 (Proceedings of the American Control Conference).
Download
@inproceedings{d7dddec4c61742079499414e1e7c0198,
title = "Adaptive Unscented Kalman Filter for Online State, Parameter, and Process Covariance Estimation",
abstract = "A novel observer for state, parameter and process covariance estimation is presented in this paper. The new observer estimates system states using a Square-Root Unscented Kalman Filter (SRUKF) and by employing the Recursive Prediction-Error (RPE) method, unknown parameters and covariances are identified online. Two experimental applications based on an underactuated planar robot are included to demonstrate the algorithm performance. Additionally, sensitivity models for the SRUKF are derived. Results show that the online process covariance estimation improves the observer convergence and reduces parameter estimation bias.",
author = "Riva, {Mauro Hernan} and Matthias Dagen and Tobias Ortmaier",
year = "2016",
month = jul,
day = "28",
doi = "10.1109/acc.2016.7526063",
language = "English",
series = "Proceedings of the American Control Conference",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "4513--4519",
booktitle = "2016 American Control Conference, ACC 2016",
address = "United States",
note = "2016 American Control Conference, ACC 2016 ; Conference date: 06-07-2016 Through 08-07-2016",

}

Download

TY - GEN

T1 - Adaptive Unscented Kalman Filter for Online State, Parameter, and Process Covariance Estimation

AU - Riva, Mauro Hernan

AU - Dagen, Matthias

AU - Ortmaier, Tobias

PY - 2016/7/28

Y1 - 2016/7/28

N2 - A novel observer for state, parameter and process covariance estimation is presented in this paper. The new observer estimates system states using a Square-Root Unscented Kalman Filter (SRUKF) and by employing the Recursive Prediction-Error (RPE) method, unknown parameters and covariances are identified online. Two experimental applications based on an underactuated planar robot are included to demonstrate the algorithm performance. Additionally, sensitivity models for the SRUKF are derived. Results show that the online process covariance estimation improves the observer convergence and reduces parameter estimation bias.

AB - A novel observer for state, parameter and process covariance estimation is presented in this paper. The new observer estimates system states using a Square-Root Unscented Kalman Filter (SRUKF) and by employing the Recursive Prediction-Error (RPE) method, unknown parameters and covariances are identified online. Two experimental applications based on an underactuated planar robot are included to demonstrate the algorithm performance. Additionally, sensitivity models for the SRUKF are derived. Results show that the online process covariance estimation improves the observer convergence and reduces parameter estimation bias.

UR - http://www.scopus.com/inward/record.url?scp=84992159476&partnerID=8YFLogxK

U2 - 10.1109/acc.2016.7526063

DO - 10.1109/acc.2016.7526063

M3 - Conference contribution

AN - SCOPUS:84992159476

T3 - Proceedings of the American Control Conference

SP - 4513

EP - 4519

BT - 2016 American Control Conference, ACC 2016

PB - Institute of Electrical and Electronics Engineers Inc.

CY - Boston, USA

T2 - 2016 American Control Conference, ACC 2016

Y2 - 6 July 2016 through 8 July 2016

ER -