Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 448-477 |
Seitenumfang | 30 |
Fachzeitschrift | Journal of Computational Physics |
Jahrgang | 366 |
Frühes Online-Datum | 11 Apr. 2018 |
Publikationsstatus | Veröffentlicht - 1 Aug. 2018 |
Abstract
In this work, we consider time step control for variational-monolithic fluid–structure interaction. The fluid–structure interaction (FSI) system is based on the arbitrary Lagrangian–Eulerian approach and couples the incompressible Navier–Stokes equations with geometrically nonlinear elasticity resulting in a nonlinear PDE system. Based on the monolithic setting, we develop algorithms for temporal adaptivity that are based on a rigorous derivation of dual-weighted sensitivity measures and heuristic truncation-based time step control. The Fractional-Step-theta scheme is the underlying time-stepping method. In order to apply the dual-weighted residual method to our setting, a Galerkin interpretation of the Fractional-Step-theta scheme must be employed. All developments are substantiated with several numerical tests, namely FSI-benchmarks, including appropriate extensions, and a flapping membrane example.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Numerische Mathematik
- Mathematik (insg.)
- Modellierung und Simulation
- Physik und Astronomie (insg.)
- Physik und Astronomie (sonstige)
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
- Informatik (insg.)
- Angewandte Informatik
- Mathematik (insg.)
- Computational Mathematics
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Computational Physics, Jahrgang 366, 01.08.2018, S. 448-477.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Adaptive time-step control for nonlinear fluid–structure interaction
AU - Failer, Lukas
AU - Wick, Thomas
N1 - Publisher Copyright: © 2018 Elsevier Inc. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2018/8/1
Y1 - 2018/8/1
N2 - In this work, we consider time step control for variational-monolithic fluid–structure interaction. The fluid–structure interaction (FSI) system is based on the arbitrary Lagrangian–Eulerian approach and couples the incompressible Navier–Stokes equations with geometrically nonlinear elasticity resulting in a nonlinear PDE system. Based on the monolithic setting, we develop algorithms for temporal adaptivity that are based on a rigorous derivation of dual-weighted sensitivity measures and heuristic truncation-based time step control. The Fractional-Step-theta scheme is the underlying time-stepping method. In order to apply the dual-weighted residual method to our setting, a Galerkin interpretation of the Fractional-Step-theta scheme must be employed. All developments are substantiated with several numerical tests, namely FSI-benchmarks, including appropriate extensions, and a flapping membrane example.
AB - In this work, we consider time step control for variational-monolithic fluid–structure interaction. The fluid–structure interaction (FSI) system is based on the arbitrary Lagrangian–Eulerian approach and couples the incompressible Navier–Stokes equations with geometrically nonlinear elasticity resulting in a nonlinear PDE system. Based on the monolithic setting, we develop algorithms for temporal adaptivity that are based on a rigorous derivation of dual-weighted sensitivity measures and heuristic truncation-based time step control. The Fractional-Step-theta scheme is the underlying time-stepping method. In order to apply the dual-weighted residual method to our setting, a Galerkin interpretation of the Fractional-Step-theta scheme must be employed. All developments are substantiated with several numerical tests, namely FSI-benchmarks, including appropriate extensions, and a flapping membrane example.
KW - Arbitrary Lagrangian–Eulerian approach
KW - Dual-weighted residual method
KW - Nonlinear fluid–structure interaction
KW - Temporal adaptivity
KW - Time step control
KW - Truncation error
UR - http://www.scopus.com/inward/record.url?scp=85045760448&partnerID=8YFLogxK
U2 - 10.1016/j.jcp.2018.04.021
DO - 10.1016/j.jcp.2018.04.021
M3 - Article
AN - SCOPUS:85045760448
VL - 366
SP - 448
EP - 477
JO - Journal of Computational Physics
JF - Journal of Computational Physics
SN - 0021-9991
ER -