Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference |
ISBN (elektronisch) | 9780791845806 |
Publikationsstatus | Veröffentlicht - 3 Okt. 2014 |
Veranstaltung | ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference - Detroit, USA / Vereinigte Staaten Dauer: 9 Juni 2014 → 13 Juni 2014 |
Abstract
In cylindrical plunge grinding with conventional grinding wheels, self-excited vibrations are one of the most limiting factors in terms of productivity and process stability. Initial vibration related to the dynamic behavior of the workpiece and machine copy on the grinding wheel, causing an increasing waviness due to uneven wear and therefore, an increasing vibration of the workpiece. These self-excited oscillations lead to many expensive true-running cycles in order to ensure high workpiece quality and process stability. In this context, we present an abrasion manipulation system for active vibration control using a self-built magnetic actuator to influence the tool wear and prevent the development of wheelsided chatter. Estimation of the grinding wheel's surface waviness has been achieved using a surface model, which parameters are estimated by a recursive-least-square-algorithm (rls), exclusively using data of workpiece movement. Using the estimated tool-surface-signal to predict forces onto the workpiece, it is possible to compensate them by the actuator and impend the development of waves on the wheel's surface. The concept has been applied to a standardized plunge grinding process demonstrating successful chatter suppression at a former instable process.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Wirtschaftsingenieurwesen und Fertigungstechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. 2014.
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Active Chatter Damping in Plunge Grinding Using Magnetic Actuators
AU - Ahrens, Markus
AU - Fischer, Ruben
AU - Dagen, Matthias
AU - Denkena, Berend
AU - Ortmaier, Tobias
PY - 2014/10/3
Y1 - 2014/10/3
N2 - In cylindrical plunge grinding with conventional grinding wheels, self-excited vibrations are one of the most limiting factors in terms of productivity and process stability. Initial vibration related to the dynamic behavior of the workpiece and machine copy on the grinding wheel, causing an increasing waviness due to uneven wear and therefore, an increasing vibration of the workpiece. These self-excited oscillations lead to many expensive true-running cycles in order to ensure high workpiece quality and process stability. In this context, we present an abrasion manipulation system for active vibration control using a self-built magnetic actuator to influence the tool wear and prevent the development of wheelsided chatter. Estimation of the grinding wheel's surface waviness has been achieved using a surface model, which parameters are estimated by a recursive-least-square-algorithm (rls), exclusively using data of workpiece movement. Using the estimated tool-surface-signal to predict forces onto the workpiece, it is possible to compensate them by the actuator and impend the development of waves on the wheel's surface. The concept has been applied to a standardized plunge grinding process demonstrating successful chatter suppression at a former instable process.
AB - In cylindrical plunge grinding with conventional grinding wheels, self-excited vibrations are one of the most limiting factors in terms of productivity and process stability. Initial vibration related to the dynamic behavior of the workpiece and machine copy on the grinding wheel, causing an increasing waviness due to uneven wear and therefore, an increasing vibration of the workpiece. These self-excited oscillations lead to many expensive true-running cycles in order to ensure high workpiece quality and process stability. In this context, we present an abrasion manipulation system for active vibration control using a self-built magnetic actuator to influence the tool wear and prevent the development of wheelsided chatter. Estimation of the grinding wheel's surface waviness has been achieved using a surface model, which parameters are estimated by a recursive-least-square-algorithm (rls), exclusively using data of workpiece movement. Using the estimated tool-surface-signal to predict forces onto the workpiece, it is possible to compensate them by the actuator and impend the development of waves on the wheel's surface. The concept has been applied to a standardized plunge grinding process demonstrating successful chatter suppression at a former instable process.
KW - Active chatter damping
KW - Magnetic actuators
KW - Plunge grinding
UR - http://www.scopus.com/inward/record.url?scp=84908876747&partnerID=8YFLogxK
U2 - 10.1115/msec2014-4111
DO - 10.1115/msec2014-4111
M3 - Conference contribution
AN - SCOPUS:84908876747
BT - ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
T2 - ASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
Y2 - 9 June 2014 through 13 June 2014
ER -