Details
Originalsprache | undefiniert/unbekannt |
---|---|
Fachzeitschrift | Journal of Symplectic Geometry, Vol. |
Publikationsstatus | Veröffentlicht - 30 Apr. 2014 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Symplectic Geometry, Vol., 30.04.2014.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Abelianization of Fuchsian Systems on a 4-punctured sphere and applications
AU - Heller, Lynn
AU - Heller, Sebastian
N1 - 23 pages, comments are welcome
PY - 2014/4/30
Y1 - 2014/4/30
N2 - In this paper we consider special linear Fuchsian systems of rank \(2\) on a \(4-\)punctured sphere and the corresponding parabolic structures. Through an explicit abelianization procedure we obtain a \(2-\)to\(-1\) correspondence between flat line bundle connections on a torus and these Fuchsian systems. This naturally equips the moduli space of flat \(SL(2,\mathbb C)-\)connections on a \(4-\)punctured sphere with a new set of Darboux coordinates. Furthermore, we apply our theory to give a complex analytic proof of Witten's formula for the symplectic volume of the moduli space of unitary flat connections on the \(4-\)punctured sphere.
AB - In this paper we consider special linear Fuchsian systems of rank \(2\) on a \(4-\)punctured sphere and the corresponding parabolic structures. Through an explicit abelianization procedure we obtain a \(2-\)to\(-1\) correspondence between flat line bundle connections on a torus and these Fuchsian systems. This naturally equips the moduli space of flat \(SL(2,\mathbb C)-\)connections on a \(4-\)punctured sphere with a new set of Darboux coordinates. Furthermore, we apply our theory to give a complex analytic proof of Witten's formula for the symplectic volume of the moduli space of unitary flat connections on the \(4-\)punctured sphere.
KW - math.AG
KW - math.SG
KW - 14H60, 32G13, 53D30
M3 - Article
JO - Journal of Symplectic Geometry, Vol.
JF - Journal of Symplectic Geometry, Vol.
SN - 1540-2347
ER -