Abelian fourfolds of weil type and certain K3 double planes

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Organisationseinheiten

Externe Organisationen

  • Università di Torino
  • Université Grenoble Alpes (UGA)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)339-383
Seitenumfang45
FachzeitschriftRendiconti del Seminario Matematico
Jahrgang71
Ausgabenummer3-4
PublikationsstatusVeröffentlicht - 2013

Abstract

Double planes branched in 6 lines give a famous example of K3 surfaces. Their moduli are well understood and related to abelian fourfolds of Weil type. We compare these two moduli interpretations and in particular divisors on the moduli spaces. On the K3 side, this is achieved with the help of elliptic fibrations. We also study the Kuga-Satake correspondence on these special divisors.

ASJC Scopus Sachgebiete

Zitieren

Abelian fourfolds of weil type and certain K3 double planes. / Lombardo, Giuseppe; Peters, Chris A. M; Schütt, M.
in: Rendiconti del Seminario Matematico, Jahrgang 71, Nr. 3-4, 2013, S. 339-383.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Lombardo, G, Peters, CAM & Schütt, M 2013, 'Abelian fourfolds of weil type and certain K3 double planes', Rendiconti del Seminario Matematico, Jg. 71, Nr. 3-4, S. 339-383. <https://arxiv.org/abs/1209.5997>
Lombardo, G., Peters, C. A. M., & Schütt, M. (2013). Abelian fourfolds of weil type and certain K3 double planes. Rendiconti del Seminario Matematico, 71(3-4), 339-383. https://arxiv.org/abs/1209.5997
Lombardo G, Peters CAM, Schütt M. Abelian fourfolds of weil type and certain K3 double planes. Rendiconti del Seminario Matematico. 2013;71(3-4):339-383.
Lombardo, Giuseppe ; Peters, Chris A. M ; Schütt, M. / Abelian fourfolds of weil type and certain K3 double planes. in: Rendiconti del Seminario Matematico. 2013 ; Jahrgang 71, Nr. 3-4. S. 339-383.
Download
@article{ea058e7c25e946178571703d27e8424b,
title = "Abelian fourfolds of weil type and certain K3 double planes",
abstract = "Double planes branched in 6 lines give a famous example of K3 surfaces. Their moduli are well understood and related to abelian fourfolds of Weil type. We compare these two moduli interpretations and in particular divisors on the moduli spaces. On the K3 side, this is achieved with the help of elliptic fibrations. We also study the Kuga-Satake correspondence on these special divisors. ",
author = "Giuseppe Lombardo and Peters, {Chris A. M} and M. Sch{\"u}tt",
year = "2013",
language = "English",
volume = "71",
pages = "339--383",
number = "3-4",

}

Download

TY - JOUR

T1 - Abelian fourfolds of weil type and certain K3 double planes

AU - Lombardo, Giuseppe

AU - Peters, Chris A. M

AU - Schütt, M.

PY - 2013

Y1 - 2013

N2 - Double planes branched in 6 lines give a famous example of K3 surfaces. Their moduli are well understood and related to abelian fourfolds of Weil type. We compare these two moduli interpretations and in particular divisors on the moduli spaces. On the K3 side, this is achieved with the help of elliptic fibrations. We also study the Kuga-Satake correspondence on these special divisors.

AB - Double planes branched in 6 lines give a famous example of K3 surfaces. Their moduli are well understood and related to abelian fourfolds of Weil type. We compare these two moduli interpretations and in particular divisors on the moduli spaces. On the K3 side, this is achieved with the help of elliptic fibrations. We also study the Kuga-Satake correspondence on these special divisors.

UR - http://www.scopus.com/inward/record.url?scp=84945275817&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84945275817

VL - 71

SP - 339

EP - 383

JO - Rendiconti del Seminario Matematico

JF - Rendiconti del Seminario Matematico

SN - 0373-1243

IS - 3-4

ER -

Von denselben Autoren