Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 115360 |
Fachzeitschrift | Computer Methods in Applied Mechanics and Engineering |
Jahrgang | 399 |
Frühes Online-Datum | 16 Juli 2022 |
Publikationsstatus | Veröffentlicht - 1 Sept. 2022 |
Abstract
This paper presents a weak-intrusive stochastic finite element method for solving stochastic structural dynamics equations. In this method, the stochastic solution is decomposed into the summation of a series of products of random variables, spatial vectors and temporal functions. An iterative algorithm is proposed to compute each triplet of the random variable, spatial vector and temporal function one by one. The original stochastic dynamics problem is firstly transformed into spatial–temporal coupled problems (i.e. deterministic structural dynamics equations), which can be solved efficiently by existing FEM solvers. Based on the solution of the spatial–temporal coupled problem, the original problem is then transformed into stochastic-temporal coupled problems (i.e. one-dimensional second-order stochastic ordinary differential equations), which are solved by a proposed sampling method. All random sources are embedded into the stochastic-temporal coupled problems. The proposed sampling method can solve the stochastic-temporal problems of hundreds of dimensions with low computational costs. Thus the curse of dimensionality in high-dimensional stochastic spaces is avoided with great success. Three numerical examples, including low- and high-dimensional stochastic problems, are used to demonstrate the good accuracy and the high efficiency of the proposed method.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Numerische Mechanik
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Maschinenbau
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
- Informatik (insg.)
- Angewandte Informatik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Computer Methods in Applied Mechanics and Engineering, Jahrgang 399, 115360, 01.09.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A weak-intrusive stochastic finite element method for stochastic structural dynamics analysis
AU - Zheng, Zhibao
AU - Beer, Michael
AU - Dai, Hongzhe
AU - Nackenhorst, Udo
N1 - Funding Information: The authors are grateful to the Alexander von Humboldt Foundation and the International Research Training Group 2657 (IRTG 2657) funded by the German Research Foundation (DFG) (Grant reference number 433082294 ).
PY - 2022/9/1
Y1 - 2022/9/1
N2 - This paper presents a weak-intrusive stochastic finite element method for solving stochastic structural dynamics equations. In this method, the stochastic solution is decomposed into the summation of a series of products of random variables, spatial vectors and temporal functions. An iterative algorithm is proposed to compute each triplet of the random variable, spatial vector and temporal function one by one. The original stochastic dynamics problem is firstly transformed into spatial–temporal coupled problems (i.e. deterministic structural dynamics equations), which can be solved efficiently by existing FEM solvers. Based on the solution of the spatial–temporal coupled problem, the original problem is then transformed into stochastic-temporal coupled problems (i.e. one-dimensional second-order stochastic ordinary differential equations), which are solved by a proposed sampling method. All random sources are embedded into the stochastic-temporal coupled problems. The proposed sampling method can solve the stochastic-temporal problems of hundreds of dimensions with low computational costs. Thus the curse of dimensionality in high-dimensional stochastic spaces is avoided with great success. Three numerical examples, including low- and high-dimensional stochastic problems, are used to demonstrate the good accuracy and the high efficiency of the proposed method.
AB - This paper presents a weak-intrusive stochastic finite element method for solving stochastic structural dynamics equations. In this method, the stochastic solution is decomposed into the summation of a series of products of random variables, spatial vectors and temporal functions. An iterative algorithm is proposed to compute each triplet of the random variable, spatial vector and temporal function one by one. The original stochastic dynamics problem is firstly transformed into spatial–temporal coupled problems (i.e. deterministic structural dynamics equations), which can be solved efficiently by existing FEM solvers. Based on the solution of the spatial–temporal coupled problem, the original problem is then transformed into stochastic-temporal coupled problems (i.e. one-dimensional second-order stochastic ordinary differential equations), which are solved by a proposed sampling method. All random sources are embedded into the stochastic-temporal coupled problems. The proposed sampling method can solve the stochastic-temporal problems of hundreds of dimensions with low computational costs. Thus the curse of dimensionality in high-dimensional stochastic spaces is avoided with great success. Three numerical examples, including low- and high-dimensional stochastic problems, are used to demonstrate the good accuracy and the high efficiency of the proposed method.
KW - Curse of dimensionality
KW - Stochastic finite element method
KW - Stochastic structural dynamics
KW - Weak-intrusive approach
UR - http://www.scopus.com/inward/record.url?scp=85134433996&partnerID=8YFLogxK
U2 - 10.1016/j.cma.2022.115360
DO - 10.1016/j.cma.2022.115360
M3 - Article
AN - SCOPUS:85134433996
VL - 399
JO - Computer Methods in Applied Mechanics and Engineering
JF - Computer Methods in Applied Mechanics and Engineering
SN - 0045-7825
M1 - 115360
ER -