A space-based quantum gas laboratory at picokelvin energy scales

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Naceur Gaaloul
  • Matthias Meister
  • Robin Corgier
  • Annie Pichery
  • Patrick Boegel
  • Waldemar Herr
  • Holger Ahlers
  • Eric Charron
  • Jason R. Williams
  • Robert J. Thompson
  • Wolfgang P. Schleich
  • Ernst M. Rasel
  • Nicholas P. Bigelow

Externe Organisationen

  • Universität Paris-Süd
  • Observatoire de Paris (OBSPARIS)
  • Universität Ulm
  • California Institute of Technology (Caltech)
  • Texas A and M University
  • University of Rochester
  • DLR-Institut für Quantentechnologien
  • Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer7889
FachzeitschriftNature Communications
Jahrgang13
Ausgabenummer1
PublikationsstatusVeröffentlicht - 22 Dez. 2022

Abstract

Ultracold quantum gases are ideal sources for high-precision space-borne sensing as proposed for Earth observation, relativistic geodesy and tests of fundamental physical laws as well as for studying new phenomena in many-body physics during extended free fall. Here we report on experiments with the Cold Atom Lab aboard the International Space Station, where we have achieved exquisite control over the quantum state of single 87Rb Bose-Einstein condensates paving the way for future high-precision measurements. In particular, we have applied fast transport protocols to shuttle the atomic cloud over a millimeter distance with sub-micrometer accuracy and subsequently drastically reduced the total expansion energy to below 100 pK with matter-wave lensing techniques.

Zitieren

A space-based quantum gas laboratory at picokelvin energy scales. / Gaaloul, Naceur; Meister, Matthias; Corgier, Robin et al.
in: Nature Communications, Jahrgang 13, Nr. 1, 7889, 22.12.2022.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Gaaloul, N, Meister, M, Corgier, R, Pichery, A, Boegel, P, Herr, W, Ahlers, H, Charron, E, Williams, JR, Thompson, RJ, Schleich, WP, Rasel, EM & Bigelow, NP 2022, 'A space-based quantum gas laboratory at picokelvin energy scales', Nature Communications, Jg. 13, Nr. 1, 7889. https://doi.org/10.48550/arXiv.2201.06919, https://doi.org/10.1038/s41467-022-35274-6
Gaaloul, N., Meister, M., Corgier, R., Pichery, A., Boegel, P., Herr, W., Ahlers, H., Charron, E., Williams, J. R., Thompson, R. J., Schleich, W. P., Rasel, E. M., & Bigelow, N. P. (2022). A space-based quantum gas laboratory at picokelvin energy scales. Nature Communications, 13(1), Artikel 7889. https://doi.org/10.48550/arXiv.2201.06919, https://doi.org/10.1038/s41467-022-35274-6
Gaaloul N, Meister M, Corgier R, Pichery A, Boegel P, Herr W et al. A space-based quantum gas laboratory at picokelvin energy scales. Nature Communications. 2022 Dez 22;13(1):7889. doi: 10.48550/arXiv.2201.06919, 10.1038/s41467-022-35274-6
Gaaloul, Naceur ; Meister, Matthias ; Corgier, Robin et al. / A space-based quantum gas laboratory at picokelvin energy scales. in: Nature Communications. 2022 ; Jahrgang 13, Nr. 1.
Download
@article{68830b9a3d1c43c5a271f5c0bb4dee9d,
title = "A space-based quantum gas laboratory at picokelvin energy scales",
abstract = "Ultracold quantum gases are ideal sources for high-precision space-borne sensing as proposed for Earth observation, relativistic geodesy and tests of fundamental physical laws as well as for studying new phenomena in many-body physics during extended free fall. Here we report on experiments with the Cold Atom Lab aboard the International Space Station, where we have achieved exquisite control over the quantum state of single 87Rb Bose-Einstein condensates paving the way for future high-precision measurements. In particular, we have applied fast transport protocols to shuttle the atomic cloud over a millimeter distance with sub-micrometer accuracy and subsequently drastically reduced the total expansion energy to below 100 pK with matter-wave lensing techniques.",
author = "Naceur Gaaloul and Matthias Meister and Robin Corgier and Annie Pichery and Patrick Boegel and Waldemar Herr and Holger Ahlers and Eric Charron and Williams, {Jason R.} and Thompson, {Robert J.} and Schleich, {Wolfgang P.} and Rasel, {Ernst M.} and Bigelow, {Nicholas P.}",
note = "Funding Information: Designed, managed and operated by Jet Propulsion Laboratory, Cold Atom Lab is sponsored by the Biological and Physical Sciences Division of NASA{\textquoteright}s Science Mission Directorate at the agency{\textquoteright}s headquarters in Washington and the International Space Station Program at NASA{\textquoteright}s Johnson Space Center in Houston. This work is supported by NASA through the Jet Propulsion Laboratory Research Service Agreements including RSA 1616833a and the DLR Space Administration with funds provided by the Federal Ministry for Economic Affairs and Climate Action (BMWK) under grant numbers DLR 50WM1861-2 (CAL) (M.M., P.B., W.P.S., N.G., E.M.R., A.P.), 50WM2245-A/B (CAL-II) (P.B., W.P.S., N.G., E.M.R., A.P.), 50WP1705 (BECCAL) (M.M., W.P.S.), 50WM2060 (CARIOQA) (N.G., E.M.R.) and 50WM2263A (CARIOQA-GE) (N.G., E.M.R.) and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany{\textquoteright}s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967 (E.M.R.) and through the CRC 1227 (DQ-mat) within Project Nos. A05 (N.G.), B07 (E.M.R.). N.G. acknowledges funding from “Nieders{\"a}chsisches Vorab” through the Quantum- and Nano-Metrology (QUANOMET) initiative within the project QT3 and H.A. through “F{\"o}rderung von Wissenschaft und Technik in Forschung und Lehre” for the initial funding of research in the new DLR-SI Institute. A.P. and E.C. thank the M{\'e}socentre computing center of CentraleSup{\'e}lec and {\'E}cole Normale Sup{\'e}rieure Paris-Saclay supported by CNRS and R{\'e}gion {\^I}le-de-France (http://mesocentre.centralesupelec.fr/) for HPC resources. ",
year = "2022",
month = dec,
day = "22",
doi = "10.48550/arXiv.2201.06919",
language = "English",
volume = "13",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",

}

Download

TY - JOUR

T1 - A space-based quantum gas laboratory at picokelvin energy scales

AU - Gaaloul, Naceur

AU - Meister, Matthias

AU - Corgier, Robin

AU - Pichery, Annie

AU - Boegel, Patrick

AU - Herr, Waldemar

AU - Ahlers, Holger

AU - Charron, Eric

AU - Williams, Jason R.

AU - Thompson, Robert J.

AU - Schleich, Wolfgang P.

AU - Rasel, Ernst M.

AU - Bigelow, Nicholas P.

N1 - Funding Information: Designed, managed and operated by Jet Propulsion Laboratory, Cold Atom Lab is sponsored by the Biological and Physical Sciences Division of NASA’s Science Mission Directorate at the agency’s headquarters in Washington and the International Space Station Program at NASA’s Johnson Space Center in Houston. This work is supported by NASA through the Jet Propulsion Laboratory Research Service Agreements including RSA 1616833a and the DLR Space Administration with funds provided by the Federal Ministry for Economic Affairs and Climate Action (BMWK) under grant numbers DLR 50WM1861-2 (CAL) (M.M., P.B., W.P.S., N.G., E.M.R., A.P.), 50WM2245-A/B (CAL-II) (P.B., W.P.S., N.G., E.M.R., A.P.), 50WP1705 (BECCAL) (M.M., W.P.S.), 50WM2060 (CARIOQA) (N.G., E.M.R.) and 50WM2263A (CARIOQA-GE) (N.G., E.M.R.) and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967 (E.M.R.) and through the CRC 1227 (DQ-mat) within Project Nos. A05 (N.G.), B07 (E.M.R.). N.G. acknowledges funding from “Niedersächsisches Vorab” through the Quantum- and Nano-Metrology (QUANOMET) initiative within the project QT3 and H.A. through “Förderung von Wissenschaft und Technik in Forschung und Lehre” for the initial funding of research in the new DLR-SI Institute. A.P. and E.C. thank the Mésocentre computing center of CentraleSupélec and École Normale Supérieure Paris-Saclay supported by CNRS and Région Île-de-France (http://mesocentre.centralesupelec.fr/) for HPC resources.

PY - 2022/12/22

Y1 - 2022/12/22

N2 - Ultracold quantum gases are ideal sources for high-precision space-borne sensing as proposed for Earth observation, relativistic geodesy and tests of fundamental physical laws as well as for studying new phenomena in many-body physics during extended free fall. Here we report on experiments with the Cold Atom Lab aboard the International Space Station, where we have achieved exquisite control over the quantum state of single 87Rb Bose-Einstein condensates paving the way for future high-precision measurements. In particular, we have applied fast transport protocols to shuttle the atomic cloud over a millimeter distance with sub-micrometer accuracy and subsequently drastically reduced the total expansion energy to below 100 pK with matter-wave lensing techniques.

AB - Ultracold quantum gases are ideal sources for high-precision space-borne sensing as proposed for Earth observation, relativistic geodesy and tests of fundamental physical laws as well as for studying new phenomena in many-body physics during extended free fall. Here we report on experiments with the Cold Atom Lab aboard the International Space Station, where we have achieved exquisite control over the quantum state of single 87Rb Bose-Einstein condensates paving the way for future high-precision measurements. In particular, we have applied fast transport protocols to shuttle the atomic cloud over a millimeter distance with sub-micrometer accuracy and subsequently drastically reduced the total expansion energy to below 100 pK with matter-wave lensing techniques.

UR - http://www.scopus.com/inward/record.url?scp=85144542482&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2201.06919

DO - 10.48550/arXiv.2201.06919

M3 - Article

C2 - 36550117

AN - SCOPUS:85144542482

VL - 13

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

IS - 1

M1 - 7889

ER -