Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 285-295 |
Seitenumfang | 11 |
Fachzeitschrift | Communications in Numerical Methods in Engineering |
Jahrgang | 19 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 7 Jan. 2003 |
Abstract
In this paper a simple finite element formulation for two-dimensional frictional contact problems undergoing large deformations is presented. It is equivalent to the standard node-to-segment interpolation but it leads to a less complicated matrix formulation and hence is on one hand more efficient and on the other hand easier to implement.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Software
- Mathematik (insg.)
- Modellierung und Simulation
- Ingenieurwesen (insg.)
- Allgemeiner Maschinenbau
- Informatik (insg.)
- Theoretische Informatik und Mathematik
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Communications in Numerical Methods in Engineering, Jahrgang 19, Nr. 4, 07.01.2003, S. 285-295.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - A simple formulation for two-dimensional contact problems using a moving friction cone
AU - Wriggers, Peter
AU - Haraldsson, A.
PY - 2003/1/7
Y1 - 2003/1/7
N2 - In this paper a simple finite element formulation for two-dimensional frictional contact problems undergoing large deformations is presented. It is equivalent to the standard node-to-segment interpolation but it leads to a less complicated matrix formulation and hence is on one hand more efficient and on the other hand easier to implement.
AB - In this paper a simple finite element formulation for two-dimensional frictional contact problems undergoing large deformations is presented. It is equivalent to the standard node-to-segment interpolation but it leads to a less complicated matrix formulation and hence is on one hand more efficient and on the other hand easier to implement.
KW - Contact mechanics
KW - Coulomb friction
KW - Finite deformations
KW - Finite element discretization
KW - Moving friction cone
UR - http://www.scopus.com/inward/record.url?scp=0037390619&partnerID=8YFLogxK
U2 - 10.1002/cnm.590
DO - 10.1002/cnm.590
M3 - Article
AN - SCOPUS:0037390619
VL - 19
SP - 285
EP - 295
JO - Communications in Numerical Methods in Engineering
JF - Communications in Numerical Methods in Engineering
SN - 1069-8299
IS - 4
ER -